2020 QuarkNet Online Neutrino Workshop Notes

Day 1			
09:00 - 09:30	QuarkNet Account Registration and Account update		
09:30 - 09:45	Story line: The idea of neutrinos arose in connection with radioactive beta-decay ($n \rightarrow p^+ + e^- + \overline{\nu}_e$). One important characteristic of beta decay is the random nature of the decay and the mean lifetime (tau) used to characterize it, where the number of undecayed particles after time t = 0 is given by $N(t) = N_0 e^{-t/\tau}$. To better understand the meaning of "mean lifetime" for radioactive particle, let us examine the following question:		
09:45 - 10:00	"What is the most likely number of throws necessary to produce a "1" on the top of a 6-sided die?" Get off-the-cuff responses. Make sure that participants have a Tally Sheet (emailed to them or available online) for use. Describe Google Sheet for common data entry and Excel spreadsheet for individual use.		
10:00 - 10:45	Conduct experiment or simulation.		
BREAK	(Take a break before 10:45 when convenient for you.)		
10:45 - 11:00	Discuss why "One throw" is the answer to the initial question. Note that "six throws" is the weighted average value for a large number of repetitions. Note the connection to the QuarkNet Data Activity "Mean Lifetime Dice: part 1" and the connection between mean lifetime and half-life.		
11:00 – 11:45	Describe MINER ν A hardware and ARACHNE software with neutrino to muon examples. Note the connection to the QuarkNet Data Activity "Mean Lifetime Part3: MINERvA."		

11:45 – 14:00	LUNCH (when convenient). Participants gather MINER ν A data to determine muon lifetime and Michel electron energy. Moderator available for consultation: 11:45 – 12:30 and 13:30 – 14:00.
14:00 – 14:30	Describe how to make and plot a histogram in Google sheets (and Excel if necessary). Note avoidance of first 500 microseconds in MINER ν A data and how to cope with that. Compare measured muon mean lifetime with standard value. Note availability of Excel spreadsheet with all MINERvA electron values.
14:30 – 14:45	Discuss Michel electron energy histogram and implications of that for neutrinos in muon decay. Note conservation of lepton family number.
14:45 - 15:45	"Neutrinos: Mystery and History" – Three options: (1) play recorded QW2 talk, (2) sue slides from QW2 talk with or without the script provided, (3) Moderator provides talk on neutrino history
15:45 – 16:00	Participants present and discuss reflections on day's activities. For 2-day or 1.5-day Workshop: Homework assignment
16:00 – 17:00	For 1-day Workshop: Participants develop plans to implement in their classrooms activities or approaches derived from this workshop. End of Workshop Note resources available on neutrinos.
Day 2	
09:00 – 09:30	Greetings. Homework review. (Email to participants solutions to any homework problems.)
09:30 - 10:15	"How do we know that our cosmic ray detectors are detecting muons?" Gather and discuss off-the-cuff answers from participants. Engage in "Mean Lifetime Part 2: Cosmic Muons" activity.
10:15 - 10:30	Discuss activity results.
10:30 - 10:45	Break

10:45 - 11:00	Moderator presents "What Heisenberg Knew" activity.			
11:00 - 11:45	Participants engage in "What Heisenberg Knew" activity.			
11:45 - 12:00	Discuss activity results.			
12:00 – 13:00	For 1.5-day Workshop: Participants develop plans to implement in their classrooms activities or approaches derived from this workshop. End of Workshop Note resources available on neutrinos.			
12:00 - 12:15	For 2-day workshop: "How do we use neutrinos to measure neutron momentum in a nucleus?" Neutrinos can be used as probes to study other particles. Participants speculate. Moderator presents MINER ν A "Momentum Conservation" activity and assigns data sets to participants.			
12:15 – 14:15	LUNCH (when convenient). Participants gather MINER ν A data on muon and proton momentum and energy values and determine target neutron transverse momentum. (Moderator sets time available for consultation, <i>e.g.</i> 12:15 – 12:45 and 13:45 – 14:15.)			
	Provide Google sheet or Excel spread sheet for data gathering and calculations.			
14:15 – 14:45	Discuss MINER ν A "Momentum Conservation" activity results. Note availability of documents with all MINERvA data and reviews of various possible causes of nuclear motion.			
14:45 - 15:15	Moderator presents information on current neutrino experiments.			
15:15 - 15:30	Complete QuarkNet Workshop Survey			
15:30 - 16:30	For 2-day Workshop: Participants develop plans to implement in their classrooms activities or approaches derived from this workshop End of Workshop Note resources available on neutrinos.			