

Evaluation Results:2023 Kathryn Race Race & Associates, Ltd. <u>race associates@msn.com</u>

Evaluation Themes

Focus

Develop (and use) Program Theory Model (PTM)

Measure Outcomes (teacher, student and long-term)

Measure Center-level Program Outcomes

Program Strategies

Measurable Program Outcomes

Sources of Outcomes Data

Teacher Full Survey

Primary Focus: Quantitative analyses of teacher, student and long-term outcomes

Update Survey

Primary Focus: Qualitative analyses of QN content and material use in the classrooms

Center Feedback Process

Primary Focus: Comparing center-level and teacher-level responses

Virtual Workshop Visits by Evaluator

Primary Focus: Implementation plan discussions

Multiple Sources of Information

Workshop Summary Table compiled from:

Workshop Agendas

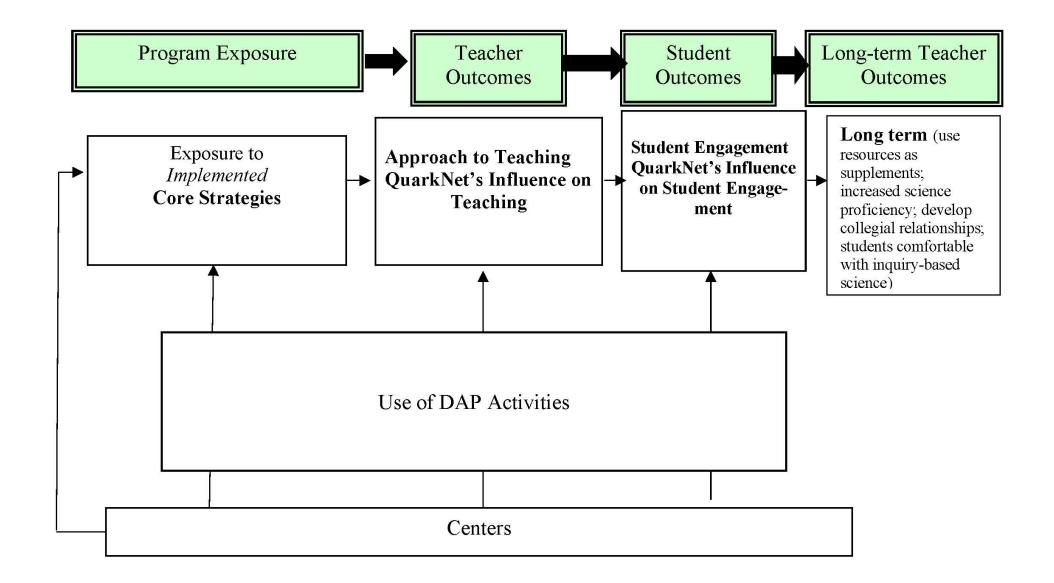
Annual Reports from Centers

Data Activities Portfolio alignment with:

NGSS Science Practices Workshop Engagement Enduring Understandings

Acknowledge and Review other Information

(e.g., cosmic ray studies, use of comic watches, professional presentations; masterclasses; student-collected data)

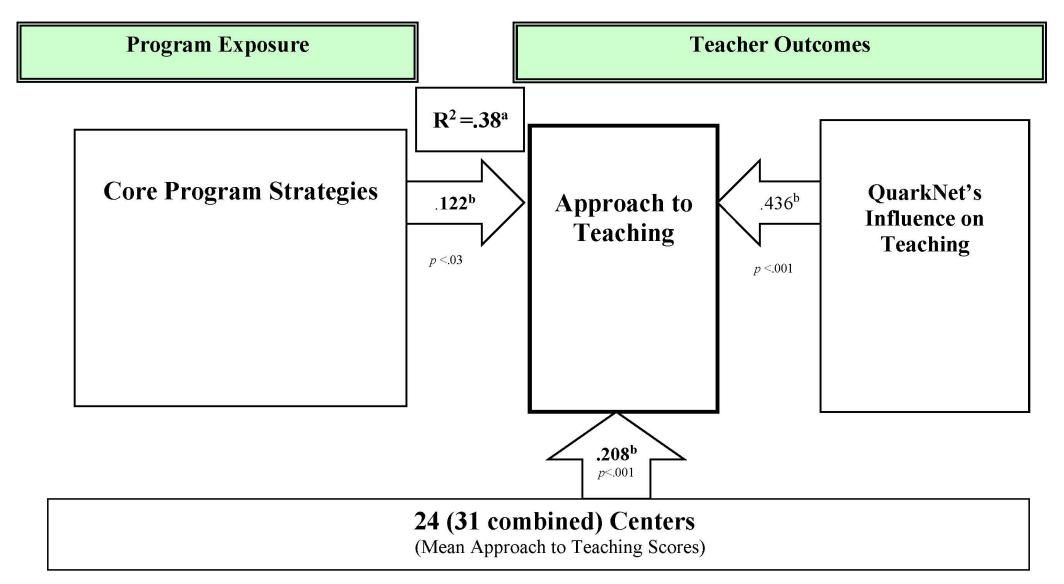

Program Information/Outcomes Data

Used to:

Compare *designed* to *implemented* program Provide context in which program is implemented Informs outcomes assessment

Quantitative Outcomes Analyses

TableSummary of Scale Development and Supportive Statistics


Scale	What's Measured	# of Items	N	Mean	Standard Deviation	Cronbach's Alpha
Core Strategies	Teachers' perceived exposure to program core strategies articulated in PTM	12	464	54.10	6.97	0.86
Approach to Teaching	Perceived assessment of QN teacher outcomes	12	447	42.85	8.38	0.87
QN's Influence on Teaching	Perceived assessment of how QN has influenced teaching practices and content	12	402	48.04	9.51	0.91
Student Engagement (SE)	Teachers' perceptions of student engagement in their classroom	5	425	18.38	3.66	0.84
QN's Influence on SE	How QN has influenced this student engagement	5	357	19.63	4.06	0.91
Long-term Teacher Outcomes	Teachers' perceptions related to long- term behaviors such as use resources as supplements; increase science proficiency; develop collegial relationships; and students more comfortable with inquiry-based science.	4	450	17.53	2.56	0.82

TableComparative Analyses of Individual QuarkNet Components:Unique Contributions of Each

QuarkNet Program Component	Statistical Results	Other Relationships	Long-term Teacher Outcomes	
Data Camp	Data Camp experience was shown to be statistically significantly related to higher Approach to Teaching scores (on average) by participating teachers.	Workshop experience was also statistically significantly related to higher Approach to Teaching scores (on average).	All QuarkNet components Data Camp, Variety of Workshops, and Masterclass participation were statistically significantly related to higher Long-term Teacher Outcomes scores (on average).	
Variety of Workshops	Participation in workshops (two or more) as reported by teachers was statistically significantly related to higher scores (on average) for Core Strategies, ^a Approach to Teaching , QN's Influence on Teaching , ^a and Student Engagement .	Higher Student Engagement scores (on average) were also statistically significantly related to teachers' participation in Masterclass.		
Masterclass	Participation in Masterclasses (one or more) as reported by teachers was statistically significantly related to Student Engagement , and QN's Influence on Student Engagement scores.	Higher Student Engagement scores were also statistically significantly related to reported workshop participation.		

Note: This table summarizes the results of a series of ANOVA analyses where each of the listed QuarkNet program components are treated simultaneously as independent variables; where in separate analyses Core Strategies, Approach to Teaching; QN's Influence on Teaching, Student Engagement, QN's Influence on Student Engagement, and Longterm Teacher Outcomes scores each is treated as the dependent variable. Long-term outcomes include survey items that address: 1. Use resources as supplements. 2. Increased science proficiency; 3. Develop collegial relationships; and 4. Students are more comfortable with inquiry-based sciences. ^aUnequal variance was noted as well.

	Program Exposure					
 Data Camp N=159 Workshops N=223 Coding Camp N ~ 100 Masterclasess N=201 e-Labs (workshops N=279 Represents multiple counts N = 438 		 Core Program Strategies Scores^a Provide opportunities for teachers to: Engage as active leamers, as students. Do science the way scientists do science. Engage in authentic particle physics investigations (that may or may not involve phenomenon known by scientists). Engage in authentic data analysis experience(s) using large data sets. Develop explanations of particle physics content. Discuss the concept of uncertainty in particle physics. Engage in project-based learning that models guided-inquiry strategies. Share ideas related to content and pedagogy. Review and select particle physics examples from the Data Activities Portfolio instructional materials. Use the pathways, suggested in the Data Activities Portfolio, to help design implementation plan(s), incorporating their experience(s) and Data Activities Portfolio instructional materials. Become aware of resources outside of their classroom. *Reliability Coefficient [Cronbach's Alpha = 0.86] 				
←	Centers					

Reliability Coefficients:Core Program Strategies0.86Approach to Teaching0.87QN's Influence on Teaching0.91

 $F_{(3, 316)} = 65.66, p < .001$ ^aPercent variance explained ^bStandardized beta weights

Qualitative Analyses: Implementation Plan Examples

 Table _

 Self-reported Use of Data Activities Portfolio Activities: Based on Reponses from the Full Survey and then Responses from the Update Survey in Subsequent Years Johns Hopkins University

Center	Program Year (Year of Full	Subsequent Program Year	Subsequent Program Year	Subsequent Program Year
	Survey)	_		
Johns	2019	2020	2021	2022
Hopkins University	I think Rolling for Rutherford is an easy way for them to understand the experiment through experience and inquiry. I would adapt it to more than just rolling a marble at dice. I would also have them roll a marble at a mystery shape underneath a piece of cardboard and predict what the shape was.	This year, we did more related to online learning because of the circumstances related to the pandemic. Having content that can be used virtually, like the QuarkNet e-Labs, will be super useful. Examples: Rolling with Rutherford; The one where you use the detector information.	Next year I will be teaching astronomy in addition to physics, so the cosmology topics and activities that we just happen to focus on this year will be particularly helpful. The new ones I will incorporate are: Mapping the Poles and Particle Transformation.	I was doing Coding Camp 1. The obvious thing from this experience is that I would incorporate is the coding in Python. I will have some introductory coding activities, but ultimately I envision it as a tool that they will be using to help them with labs, homework or projects. I would love to do the muon decays or the leptonic mass coding activities if we get that deep into particle physics.
	I have not had the opportunity to really share with other teachers and, unfortunately, in today's test happy society, it is difficult to fit these topics into class and to convince others to fit them into class.		I plan on using the spectral analysis activities we were working on this past week into my ninth- grade physics course. Examples: Mass of the pennies; What Heisenberg knew; CMS masterclass.	When teaching forces, I have a unit on the fundamental forces of nature where I present and the students explore the standard model and the reason why we have Fermilab and the LHC. The first lab is based on the Millikan experiment using histograms and searching for patterns.
	Rolling with Rutherford, calculating energy and momentum, quark puzzle activity	Conservation laws, the standard model. Examples: Rolling with Rutherford, conservation of energy and momentum, quark model	I plan to use the blackbody radiation activity and the Hubble's law activity as culminating activities for my introductory physics class. Examples: Cosmic microwaves, Hubble's law	
	Top Quark mass	I plan to teach a unit on particle physics using activities from the data portfolio and the cosmic ray detector in my classroom. Examples: Top quark mass, mean lifetime, shuffling the particle deck	I teach particle physics and astrophysics/ cosmology in my Physics course. I will use many of the activities we worked on this week including from the Data Portfolio and new activities developed at JHU. Examples: Top Quark Mass, Hidden Neutrino, Particle Transformations	I teach a unit on quantum physics including particle physics. This includes the standard model and activities from the data activities portfolio. Examples: Top quark mass, Hidden Neutrino, Quark workbench.
	The I2U2 site examples, specifically modern physics puzzle	 Use of the materials in classroom is great: The subparticle puzzle to start modern physics 2. Masterclass involvement and implementation Standard model discussions, etc. Examples: 1. Quark puzzle/map involving learning color charge, bosons, etc. 2. Penny/coin activity 	I have used a significant number of resources involving the QuarkNet workbench, some investigations and more. Overall, my last 10+ years at QuarkNet have really increased my knowledge of certain areas. Examples: The quark workbench, masterclass, J psi (occasionally)	I intend to use my QuarkNet experiences in my own modern physics unit with all physics classes as well as having my Science National Honor Society students to listen to some of the speakers who come to our high school. Examples: The Quark Puzzle, Z mass activities, missing momentum, etc.
	Rolling with Rutherford. It's the most approachable, with a small amount of prep for students.	I am going to consider new physics principles, such as pulsars and microwave telescopes. Example: Rolling with Rutherford	I will use some of the new cosmology lessons with my Astronomy class. I teach them about the Big Bang, black body radiation and the HR diagram. I will use DAP activities as well as conservation tools. Examples: Signal and noise 1, signal and noise 2, and histograms. Rolling with Rutherford	

 Table 14

 Johns Hopkins University Summer Workshop July 23-28, 2023 Implementation Plans/Coding Projects

Plan #	Title	Brief Description		Implementation Plan			
1	Spring	Understand how	Mass On A Spring with JupyterLite				
	Mass	masses behave on					
		(vertical) springs as	Торіс	Comments			
		well as how to create	Intro to Physics,	Possible use of the Graphing notebooks and/or the Falcon9			
		and apply code to	Kinematics and Projectile	notebook to introduce coding with physics			
		express this behavior.	Motion				
			All Basic Forces, Pulleys,	Possible use of Pulley notebook adjusted with ramp			
		Brief Summary: This	Ramps	activities			
		is a modified Mass on	Energy				
		a Spring JupyterLite	Momentum	Use of QuarkNet workbench activities (Top Quark)			
		notebook. The use of	Rotation and Angular				
		the Lite notebook is	Simple Harmonic Motion	Use of Spring code notebook as presented here			
		for educators whose			κ.		
		students are not able to	Spring Notebook Backgrou				
		access normal Jupyter		ebook is serving as a summary experience for students that tak			
		notebooks due to		topic. It is taking place as a mini coding activity for students t			
		security/IT issues.		ionships governing the position of a spring mass. Furthermore	e, the coding aspects of the		
			activity serve to help the stude	activity serve to help the student navigate the difficult parts of spring motion analysis.			
		The Mass on a Spring			504 TO 1774 TT 1784		
		has been modified for		to a separate document they will use to answer the questions			
		use in an AP Physics 1	analysis and results. I leave it to the reader to decide whether to have this as an individual project or a pair				
		and AP Physics C	collaboration project.				
		mechanics class. This			and the second		
		will serve not as an		ble to determine the spring constant of a basic vertical spring v			
		introduction to the		tudent created data. In addition, students will be able to graph			
		topic but instead is		l different variables, and be able to justify how changing a var	rable affects the positions		
		more of a culminating set of activities to	outcome over time.				
		incorporate coding					
		with physics	Spring Notebook Applicatio	n:			
		with physics	Students will be introduced to	the Spring notebook with at least 45 minutes in the period. A	class wide conversation		
			will introduce this notebook and the goals behind it, along with the importance of being able to represent the physics				
			ideas involved through a coding approach. From there, students will be introduced to the actual task. From there,				
			students have a number of built-in checks for students to come to the instructor that will serve as a way to judge				
			student progress.				

Implementation Plan Example: Catholic University Center July 2023					
AP Physics, Honors 11th grade Physics and On-level Physics					
Standard Learning Goals	Assessments	Lesson/unit ideas			
 Understand energy on Macroscopic as well as Atomic scale Analyze momentum conservation Data analysis by collecting data and graphing it Make real world connections with particle physics 	 Students will do some sort of data analysis from CERN data (I have heard it's available) Perform muon detector lab (Cosmic watch lab, demonstrated by Ken) Have students explore the activities from the QuarkNet website. (showed by Ken) 	These activities will be incorporated in units of energy, energy and momentum conservation, graphing and data analysis!! Show videos on Standard Model in particle physics Share the QuarkNet net experience, Jefferson lab presentation			
If there's time I would like to talk about the Mayan pyramids and how the secret chambers are detected via cosmic ray detectors to address CROSS- DISCIPLINARY SKILLS		Show videos, share presentations			

Imple	mentation Plan Example: Catholic University Center	July 2023
12th g	grade - Research Practicum - Physical Sciences	
Stude	nt learning Goals:	
-	Develop an understanding of the Standard Model in general, Mu cosmic rays in particular (using video(s)) and of muon tomograph example → annotated bibliography) Be able to present data graphically (scatter plots, histograms) ar Be able to describe and calculate the mean of a set of data Be able to describe and calculate the measures of the spread of standard deviation) Be able to conduct and interpret hypothesis tests for two populate	hy (using pyramid nd interpret graph data (variance,
Asse	ssment:	
-	Application to data collected during a Physics lab in the previous Ongoing	s year

- Physics
 - Muon Particle Detector will come back into use.
 - Probability of radioactivity decay.
- Chemistry
 - Examination of the Standard Model looking at the exotic particles.
 - Modeling quantum numbers
- All labs
 - Include error on predictions and measurements using bar graphs and bell curves
 - Virtual labs: Cosmic Ray Studies, Phydemo, Falstad, PhET
 - \circ Use eV/c² as a dimensional analysis exercise

Group 3

What are you looking to do?

Data collection and analysis through Histograms (FWHM for uncertainty)

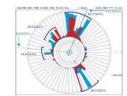
Dice Probability tied into Coin Probability. Exploring misconceptions of Probability betw een single and compound events

Using Fermilab data to measure momenta via vector addition in 2D to discover evidence of particles(momentum)

Introduction to Standard Model/Particle Physics (Shuffle the Deck Activity)

What class?

Physical Science, Chemistry, Physics


What unit?

Lab/Data Skills, Conservation of Momentum/Energy Units, Waves and Radioactive Dece

Group 4

Physics/ Chemistry/ Physical Science

- The "Dice, Histograms, and Probability" activity supports student data collection, graphing, and analysis skills. This can also be applied for radioactive decay.
- After introducing subatomic particles and quarks, the "Shuffling the Particle Deck" data activity is a great way to introduce the standard model.
- As a possible extension activity, students could be placed into groups and have them research different neutrino experiments such as ATLAS, NOvA, DUNE, MINERva, LHC, etc. being conducted around the world.
- For high school physics students, the "Case of the Missing Neutrino" activity is a great application of conservation laws to a more interesting situation than two carts on a track.

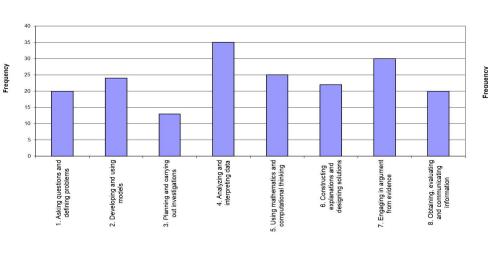
Table _	
Exemplar of Coding Activity/Implementation Plan Development	ent

	Activity/Implementation Fian Development
Summary of Coding Activities: PNW Center ^a	Four-Part Motion Lab: Coding Project
(What happened during QN Workshop)	
Day 1: Motivating the use of computer programming and computational thinking in high school physics classes. Using interactive Jupyter coding notebooks,	Velocity and Acceleration Lab
participants were able to model a projectile's motion in the earth's atmosphere; teachers progressively increased the model complexity to more accurately	Part A - Setup
model effects such as air resistance, changing density with altitude, and changes in the force of gravity with altitude. The participants also completed a	Part B - Measuring Constant Velocity
computational lab example. Participants used their smartphone accelerometer and the PhyPhox app to measure their acceleration as they walked; then utilized numerical integration techniques to calculate their velocity and	Part C: Measuring Constant Acceleration Part D - Using Python to Calculate Acceleration of a Cart Rolling Down a Ramp
position as they walked, using only acceleration data.	Excerpt of Coding:
Day 2: Participants completed a mini-bootcamp in coding with Python. Using inter- active coding notebooks, the teachers were able to both edit and run the code while also completing small learning assignments throughout the notebooks. Many teachers went from having no experience with Python to being able to	Velocity and Acceleration Lab Part A - Setup
import data and make a plot with Python.	Today, we're going to
Day 3: QuarkNet coding fellow Tracie Schroeder joined virtually and led the group to complete multiple QuarkNet coding activities using real data (muon mass, periodic table of elements, sunspot, and solar position).	Determine the velocity of the constant velocity car Confirm that the velocity is constant Measure the constant acceleration of an object failing under the influence of gravity Measure the constant acceleration of an object rolling down a ramp
Day 4: Participants were tasked by Tracie to develop a teaching lab and an associated coding notebook for analyzing any collected data. Using pair programming techniques, the participants developed a four-part motion lab for high school students utilizing Jupyter Notebooks. (In conversation with Tracie during a debriefing meeting held with coding fellows on August 27, 2023, the small group of five participating teacher made this approach possible.)	First, we meet to import the required libraries so our code can work. Click (day below to import them. + Code + Text I code + Text I stores software packages (not too exciting) I moort pandag as pd Manaport suppared in a mp1 Import matping are p Manaport suppared in a mp1 Import matping are part B. Measuring Constant Velocity
Day 5: Machine Learning. Our goal was to provide a foundational understanding of	Now, we are going to determine the velocity of the car by measuring the time it takes the car to travel 2 meters. We will take two times, the first from the starting line to 1 meter and then from 1 meter to the finish line.
machine learning concepts so that teachers could answer questions about machine learning in the classroom. To this end, Dr. Dolen walked the	Using python to verify acceleration = 0
workshop participants through two interactive learning notebooks. Using open cosmic ray data from the Major Atmospheric Gamma Imaging Cherenkov	This is where you some in, input your data for the times from 0 (startling line) to 1 meter and from 1 meter to 2 meters and run the code.
Telescopes (MAGIC), the notebooks introduced multiple concepts involved in machine learning classification tasks. Initially, the participants were tasked with i det fibric common environment and the initial and the initiated multiple states and the states an	#Take out the first hasttag (#) of the line and put in your data. t a = (.5,.6], .54,.39] t_a = sun(t_a)/len(t_a) Hcalculates the average time by summing your time measurements and dividing by the number of trials
with identifying gamma-ray cosmic ray events while rejecting hadron initiated cosmic rays. Participants identified data-based observables that could be used to separate gamma ray and hadron events. They applied these	Mnow, reseat to input the times from 1 meter to 2 meters U = [2, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
to separate gamma-ray and hadron events. They applied thresholds to these observables, measured signal efficiency and background reject rates, and developed Receiver Operating Characteristic (ROC) curves based on their choices. Participants were then exposed to decision tree and ensemble method	<pre>t0 = (t_3 + t_b)/2 #averages t_a and t_b from both t_a and t_c v0 = 1/13 #calculates velocity by taking average distance of Im and dividing by the average of t_a and t_b print("Two average time of your can is: ","a,"s") print("The average velocity of your can is: ",'(:0.3g)'.format(v0), "m/o")</pre>
machine learning tools. These machine learning methods were chosen because they are both powerful and easy to understand.	The full coding project/activity is available here: https://colab.research.google.com/drive/1jk6cgg4TfXs5V3v74i_jr65fAO-efXWc?usp=sharing

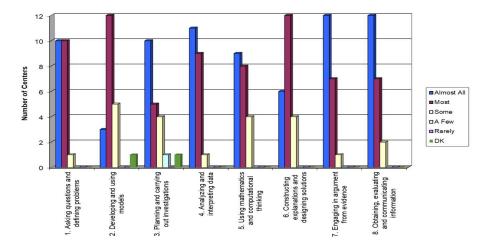
^aExcerpts from Annual Report submitted by James Dolen; https:/quarknet.org/content/pnw-quarknet-center-2023-workshop-annual-report.

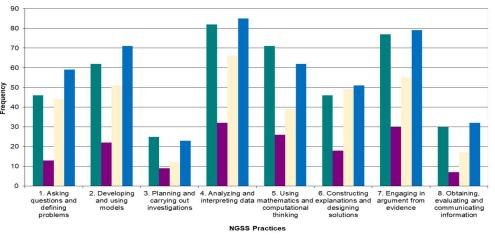
Comparing Center and Teacher Responses

Table _Comparison of Center-level^a and Individual Teacher^b Responses


Program Component	Engage Teachers as Active Learners, as Students	QN provides opportunities for teacher to engage as an active learner, as a student	QN's Influence on Teachers (on this behavior)
Opportunities for Teachers to Engage as Active Learners, as Students	<i>Almost all</i> Teachers 17/21 centers	83% of teachers reported opportunities as <i>Excellent</i>	Rated as 12/21 centers <i>High</i>
Teachers interact with Mentors Other Teachers	Almost all Teachers 14/21 centers 18/21 centers	82% of teachers reported opportunities as <i>Excellent</i>	Rated as 19/21 centers <i>Very High/High</i> 18/21 centers <i>Very High/High</i>
Form Lasting Collegial Relationships	Almost all/Most Teachers 15/21 centers	72% of teachers reported opportunities as <i>Excellent</i>	Rated as 16/21 centers <i>Very High/High</i>

^aBased on 21 (28 combined) centers


^bBased on teacher survey data from three program years (2019-2022) to be updated


Exposure to NGSS Practices: Based On DAP Activities Presented in Workshops: 2019 through 2022 (March through November for each year)

QuarkNet Data Activites Portfolio (N= 35): Alignment with NGSS Practices

Center Assessment of Teachers' Exposure to Next Generation Science Standards: Practices

Center Assessment of QuarkNet Infuence on Teachers: Next Generation Science Standards Practices

■2019 ■2020 ■2021 ■2022

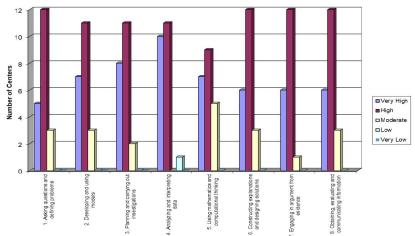


Figure Set 15. Alignment of Next Generation Science Standards (NSS) science practices and activities from the Data Activities Portfolio as designed (upper left-hand corner). Then, the exposure to NGSS practices based on *implemented* QuarkNet workshops held during the 2019 through 2022 program years (upper right-hand corner); and finally based on QuarkNet program content and DAP activities as assessed by center-level assessment of individual teacher engagement (lower left-hand corner) and then the same for perceived influence of QuarkNet on this alignment (lower right-hand corner).

Next Steps:

Acknowledge/Review Additional Data/Sources

Cosmic Ray studies (data/examples)

Masterclasses (focus on students' collection of data)

Professional Presentations (by QN staff, teachers, and students) Cosmic Watches