Boston QuarkNet Workshop Photons: Numbering the Elements

August 3, 2021

Rick Dower

The effort to identify and enumerate the elements that make up all visible things has a long history ...

- Chinese Earth, Wood, Metal, Water, Fire
- Greeks Thales (c. 600 BCE) \rightarrow water Anaximander (c. 550 BCE) \rightarrow air Heraclitus (c. 500 BCE) \rightarrow fire Empedocles (c. 450 BCE) \rightarrow Earth, Water, Air, Fire Plato (c. 400 BCE) \rightarrow Earth, Water, Air, Fire Aristotle (c. 350 BCE) \rightarrow Earth, Water, Air, Fire, Quintessence
- Paracelsus (1493-1541), an alchemist and physician advocated mercury, sulfur, salt as fundamental principles of all matter.

Robert Boyle (1627 – 1691)

- The Sceptical Chymist (1661)
- Matter consists of corpuscles (small bodies) in motion.
- "I now mean by Elements ... perfectly unmingled bodies."
- But no visible substances are elements. All observed bodies are compounds.

Antoine Lavoisier (1743 – 1794)

- Elements of Chemistry (1789)
- Lavoisier established the conservation of mass in chemical reactions
- Chemical element is a substance that cannot be separated into simpler substances by ordinary chemical processes.
- List of 3 gaseous elements, 6 nonmetallic solids, 17 metals, 5 "earthy substances", plus light and caloric

John Dalton 1766 – 1844)

- 1808 In A New System of Chemical Philosophy, Dalton listed 20 elements and 17 molecules of simple compounds, e. g. water, ammonia, composed of elemental atoms.
- Dalton developed a list of relative atomic weights from hydrogen (1) to mercury (167) based on his ideas of compounds and chemical analysis of elements in compounds.

Dmitri Mendeleev (1834-1907)

- 1869 Mendeleev published a table of 64 elements, increasing in relative atomic mass and organized by similar chemical properties.
- 1871 revised table included several blank spots for undiscovered elements, including three for which he predicted atomic mass and chemical properties

Mendeleev's Periodic Table

ner ranna			Mendei	éeff's T	ABLE I	1871.		
Series.	GROUP I. R ₂ O.	GROUP II. RO.	GROUP III. R ₂ O ₃ .	GROUP IV. RH4. RO3.	GROUP V. RH3. R2O5.	GROUP VI. RH2. RO3.	GROUP VII. RH. R907.	GROUP VIII. RO4.
I	H=r							
2	LI=7	Be=9.4	B=II	C=12	N=14	0=16	F=19	
3	Na=23	Mg=24	AI=27.3	Sl =28	P=31	S=32	CI=35.5	
4	K =39	Ca=40	-==44	Ti=48	v=51	Cr=52	Mn=55	Fe=56, Ce=59
5	(Cu=63)	Zn=6 5	-=68	-=72	As=75	Se=78	Br=So	HI=39, V I=03
6	Rb=85	Sr=87	? Y =88	Zr=90	N b ==94	M0=96	-=100	Ru=194, Rh=104
7	(Ag=108)	Cd=112	In=113	Sn=118	Sb=122	Te=125	l=127	Pu 100, Ag=100
8	Cs=133	Ba=137	? Di= 138	? Ce=140				
9								
10			? Er=178	? La=180	Ta=182	W=184		Os=195, In=197
II	(Au=199)	Hg=200	T1=204	Pb=207	Bi=208			F 1901 Ma 199
I2				Th=231		U=240		

- Mendeleev's "eka-aluminum" purified in 1875: Ga (gallium) M = 69.7
- Mendeleev's "eka-silicon" isolated in 1886: Ge (germanium) M = 72.6
- Mendeleev's "eka-boron" identified by spectrum in 1879, separated in 1937: Sc (scandium) M = 45.0

More Elements Discovered

- 1870s, 1880s 11 new elements discovered, primarily from the Lanthanide "rare earth" series
- 1890s Noble gases discovered, Ar in 1894, Kr, Ne, Xe in 1898, Rn in 1899
- Radioactive elements discovered in 1890s and early 1900s
- Are there undiscovered elements lighter than H or between H and He?
- Is there a limit to the number of elements?
- Before Henry Moseley atomic numbers were a convenient ordering system starting with the lightest know element, hydrogen.
- Atomic numbers were not recognized as fundamental.

From A to Z, Atomic Weight to Atomic Number

- Mendeleev's periodic table, ordered by atomic weight, contained anomalies in order to group similar chemical properties in vertical columns, e. g. Co (Z = 27, M = 58.9), Ni (Z = 28, M = 58.7), Ar (Z = 18, M = 39.9), K (Z = 19, M = 39.1), and Te (Z = 52, M = 127.6), I (Z = 53, M = 126.9).
- 1913 Antonius van der Broek, used Geiger and Marsden data on Rutherford theory for scattering of a particles by thin foils of five metal to propose that atomic number was a better indication of nuclear charge than (atomic weight)/2, as suggested by Geiger and Marsden
- 1913 Frederick Soddy introduced the term "isotope" for atoms with the same atomic number but different weights, *e. g.* an atom undergoing α decay followed by two β decays. Soddy supported van der Broek's idea.

Henry Gwyn Jeffreys Moseley (1887 – 1915)

- After graduating from Oxford (1910), Moseley worked with Rutherford in Manchester until late 1913, when he returned to Oxford.
- While at Manchester he began his studies of x-rays with C. G. Darwin and built an x-ray spectrometer with photographic plates to detect the diffracted x-rays.
- The Braggs used their spectrometer to study crystal structure. Moseley used his to study the elements.

Moseley's X-ray Tube (*Phil. Mag.*, 27 (1914), 704, 705)

• Side view with truck holding metal samples as anodes

 End view with evacuated iron spectrometer box, crystal table (B), and photographic plate (P)

From Moseley's Letters

• 13 August 1913 to his sister Margery:

"I am now struggling with an X ray tube with a truck inside carrying pieces of all the metals I can get hold of I want in this way to find the wave-lengths of the X ray spectra of as many elements as possible, as I believe they will prove much more important and fundamental than ordinary light spectra."

 16 November 1913 to Niels Bohr: "I have found that they [K_α x-ray wavelengths] lend great weight to the general principles which you use."

Successes of Moseley's Analysis

• "The prevalence of [x-ray spectral] lines due to impurities suggests that this may prove a powerful method of chemical analysis."

"It may even lead to the discovery of missing elements, as it will be possible to predict the position of their characteristic [spectral] lines." (*Phil Mag.*, **26** (1913), 1030.)

 French chemist George Urbain after two days with Mosley examining his samples: Moseley "untangled in a few days conundrums [about the identities and periodic table positions of proposed rare earth elements] that had taken chemists six generations merely to propose."

Aluminum (Z = 13) to Gold (Z = 79)

- Empty spots for Z = 43, 61, and 75
- Later discovered and identified: Z=43 Tc (technetium - radioactive) predicted in 1871 by Mendeleev as eka-manganese,

Z=61 Pm (promethium radioactive), isolated in 1945,

Z=75 Re (rhenium) isolated in 1925, last stable element isolated

Subsequent Developments

- Walther Kossel argued that K_{α} x-rays resulted from and electron from the n=2 shell to the n=1 shell after an n=1 electron was ejected by an incident x-ray, K_{β} arose from an n=3 to n=1 electron transition, and La x-rays were produced by n=3 to n=2 electron transitions.
- With Arnold Sommerfeld's extensions to Bohr's theory with azimuthal and magnetic quantum numbers, the results of Franck-Hertz experiments, and Kossel's account of K and L x-rays, Bohr's theory of atomic structure and the association of atomic number with the number of positive nuclear charges became widely accepted by 1920.