

W and Z boson candidates

Z decay to muon and anti-muon:

W decay to muon and neutrino:

Notes on decays:

- W decays have missing Et (usually>20 GeV) and one visible lepton track.
- Z decays can show some missing
 Et (usually<20GeV) or none and have 2 visible lepton tracks.
- Both W and Z decays can have "extra" tracks which confound quick analysis – but a "good guess" can sometimes be made.

Mathematics:

- Main equation, $E^2 = p^2c^2 + m^2c^4$ (do not worry about the c's.)
- Net energy, $\mathbf{E} = \mathbf{E}_1 + \mathbf{E}_2$ (two muons)
- Net transverse energy, $E_t = p_{t1} + p_{t2}$ (two muons) or $E_t = p_{t1} + MET$ (muon and neutrino)
- Net momentum squared, $P^2 = (p_{x1} + p_{x2})^2 + (p_{y1} + p_{y2})^2 + (p_{z1} + p_{z2})^2$ (two muons)
- Net transverse momentum squared, P_t² = (p_x + MET_x)² + (p_y + MET_y)² (muon and neutrino)