Biological physics and cell migration

Cancerous (leukemic) cell crawling through polymeric collagen environment

Chen... Betzig Science 2014

Brian Camley

Department of Physics & Astronomy Department of Biophysics Johns Hopkins University

What is biological physics?

National Academies decadal survey: https://www.nationalacademies.org/ourwork/biological-physicsphysics-of-living-systems-a-decadal-survey

Huge scope!

Mechanics questions:

Why do red blood cells have their characteristic shapes?

Mauer et al. PLOS ONE 2017

Canham 1968

Huge scope!

Mechanics questions:

Why do red blood cells have their characteristic shapes?

How can you pack 1 meter of DNA into a nucleus of a cell (a few microns across)?

Figure 10.21 Physical Biology of the Cell, 2ed. (© Garland Science 2013)

Huge scope!

Mechanics questions:

Why do red blood cells have their characteristic shapes?

How can you pack 1 meter of DNA into a nucleus of a cell (a few microns across)? Information questions:

How do cells follow chemical cues?

How does the brain process information reliably?

How do groups of animals cooperate?

If you're curious: https://www.nationalacademies.org/ourwork/biological-physicsphysics-of-living-systems-a-decadal-survey

Swimming at low Reynolds numbers (high friction, low inertia)

See: "Life at Low Reynolds Number" by EM Purcell 1977

GI Taylor

Swimming at low Reynolds numbers

Chlamydomonas (K.C Leptos, Ray Goldstein lab)

Sea urchin sperm (Jeffrey Guasto lab, Tufts)

See: "Life at Low Reynolds Number" by EM Purcell 1977

Some useful textbooks

Story 1: Collective Chemotaxis, or How Cells Work Together by Competing

Chemotaxis in a single cell

~15 µm

About 60x realtime

Dictyostelium movie from RA Firtel group, UCSD

Collective cell motility

1 second = 2 hrs 20 min real time

Vedula et al. PNAS 2012

400 microns

How does a collection of cells follow a chemical signal?

Why study chemotaxis?

Neutrophil chasing bacterium originally taken by David Rogers; http://biochemweb.org/neutrophil.shtml

Why study chemotaxis?

Tumor

Chemical signal

See, e.g. "Chemotaxis in Cancer" Nat. Rev. Cancer 2011

Why study clusters?

Cheung and Ewald, Science, 2016

Why study clusters?

Cells in the developing embryo travel together, too

Drosophila egg chamber: movie courtesy Wei Dai (Denise Montell group, UCSB)

Why do <u>physicists</u> bring to chemotaxis and cell motility?

Why should <u>physicists</u> study chemotaxis and cell motility?

Cells are soft matter

Why should <u>physicists</u> study chemotaxis and cell motility?

Cells are soft matter

Cell motion is stochastic

Why should <u>physicists</u> study chemotaxis and cell motility?

Cells are soft matter

Cell motion is stochastic

Collections of cells have emergent behaviors

Interesting observations on collective gradient sensing

Neural crest chemotaxis in vitro

Lymphocytes being chemorepelled?

Malet-Engra et al. Current Biology 2015

How can a cluster of cells follow a gradient when the individual cells don't?

"Many wrongs"

Signal S(r)

e.g. Simons Trends. Ecol. Evol. 2004

"Collective susceptibility" Cells align Rare cells sense gradient Signal S(**r**) Coburn et al. Phys. Biol. 2013 Hopkins and Camley, Phys. Rev. E 2019

"Collective guidance"

after Rørth, Curr. Opin. Cell Biol. 2007

A minimal model for "collective guidance" in neural crest

Work from Camley, Zimmermann, Levine, and Rappel, Phys. Rev. Lett. 2016

Neural crest cells protrude away from contact

Inner cells have no protrusions

Outer cells have outward protrusions

Stochastic particle model

Single cells are random walkers

Stochastic particle model

Cells want to move away from their neighbors (CIL) but are stuck together mechanically

Stochastic particle model

Signal S(r) Cells feel CIL more strongly when the signal is large

Simulations of the model

How can we tell if a cluster is using collective guidance?

What if cells can't hold together?

Cell clusters can have abilities that single cells don't!

We can determine why by looking at cell pairs at different angles

Story 2: Circulating Cells, or How Water Droplets Create Rotation

Eukaryotic cells typically crawl with a (persistent) random walk

Barnhart.... Theriot, Biophys. J. 2010

A surprise!

Allen... Theriot, Mogilner, Cell Systems 2020

Cell polarity: what is the front?

Deliberately oversimple view:

There are more proteins of certain types at the front!

(Active) Rac is one of the proteins that defines the cell front

Rac activation by light, Wu... Hahn, Nature 2009 Even if there is no signal, the cell will pick a front randomly

Think (not quite right): proteins like to clump together

What if cell isn't circular?

Like droplet of water

The interface of the high-protein area should be minimized!

Now we can understand turning!

Cell pushes forward where Rac is high Cell becomes elongated

Now we can understand turning!

Rac reorients to minimize interface length

Turning happens if the cell shape is sufficiently deformable

High tension

Camley*, Zhao*, et al. Phys. Rev. E.2017

Conclusions

Cell shape and the reactions within it are coupled, in part because high Rac areas are like a water droplet

Bonus results on patterning!

"Sensing the shape of a cell with reaction-diffusion and energy minimization" Singh, Leadbetter, Camley arXiv:2111.08496 (2021) In press at PNAS 2022

Sensing the long axis in development?

C elegans zygote: PAR-2 protein (drives asymmetric division)

Sensing the long axis in development?

Mittasch, M., et al (2018). Non-invasive perturbations of intracellular flow reveal physical principles of cell organization. Nature Cell Biology, 20(3), 344–351.

Klinkert et al... Gönczy eLife 2019

Acknowledgments

Later work done with Amit Singh, Travis Leadbetter Singh, Leadbetter, Camley arXiv:2111.08496 (2021)

Earlier work: Yanxiang Zhao, Bo Li, Herbert Levine, Wouter-Jan Rappel Juliane Zimmermann Camley*, Zhao*, et al. Phys. Rev. E 2017 Camley et al. Phys. Rev. Lett. 2016

NSF 1915491 (Physics of Living Systems) NSF 1945141 (Cond. Mat. + Materials Theory; CAREER)

