Introduction to Dark Matter

Antonio Delgado University of Notre Dame

Cosmic Cake

Measure indirectly by Planck

Angular analysis of the pertubations

 One expects in general grounds that the rotation velocity of galaxies should follow the following scaling:

The further away from $v \sim \sqrt{\frac{G_N M(r)}{r}}$ the center you are the slower you the center spin

• But much before Planck......

• But much before Planck......

• But much before Planck......

But much before Planck.....

• What explanation can we give to that discrepancy?

- What explanation can we give to that discrepancy?
 - Don't believe what the experimentalists measure

- What explanation can we give to that discrepancy?
 - Don't believe what the experimentalists measure
 - Don't believe our naïve understanding of gravity

- What explanation can we give to that discrepancy?
 - Don't believe what the experimentalists measure
 - Don't believe our naïve understanding of gravity
 - Don't believe that we "see" all matter

• What explanation can we give to that discrepancy?

- Don't believe our naïve understanding of gravity
- Don't believe that we "see" all matter

• Changing the underlying theory of gravity to explain the problem with the rotation of galaxies has lead to a new theory:

Modification Of Newtonian Dynamics

- In its minimal version it introduces a dependence of gravity on the acceleration of the body
- Tuning that value could explain the rotation's curve

- One can try to make a fully covariant theory whose low energy limit is MOND
- There has been some literature on the subject, specially by Bekenstein and his Tensor-Vector-Scalar gravity but it has some problems:
 - It does not explain as well the rotations of galaxies as DM
 - It has some inconsistencies
 - It is unclear if it can explain Planck
 - But it can not explain:

Bullet Cluster: the center of gravity (blue) differs from the center of gas (red)

- So then we are left with the possibility that the effect is due to matter than we don't see
- Could it be ordinary matter?
 - Cold gas, MACHOs, white dwarfs, black holes are not enough and are actually inconsistent with BBN
 - Neutrinos are hot (relativistic) and its density is constrained by structure formation

- We are left with candidates beyond the standard model
- We are looking for a particle which:
 - Is stable or metastable (in order to be able to explain DM now)
 - Neutral
 - Cold i.e. not relativistic (maybe warm)
 - Whose interactions are such that it leads to the observed density

One of the first candidates proposes is the axion with a mass of around ~10⁻⁵ eV (even lighter than neutrinos by 5 orders)

LIGHT BEAM experiment that would confirm the existence of axions passes a laser beam through a strong magnetic field, converting some photons to axions (green beam). The axions penetrate a wall before passing through another magnetic field that converts some of the particles back to photons, which form an extremely faint spot on the far wall.

- Another possibilities are WIMPS, particles with weak interactations and masses around 100 GeV
- The so-called WIMP miracle occurs because with masses and couplings testable right now you can reproduce the DM abundance thermaly.

• DM talks to us:

 When temperature drops we do not have enough energy to produce DM:

 When temperature drops we do not have enough energy to produce DM:

- In an static universe that would mean that DM will eventually desappear into us.
- But the universe is expanding so it leaves a relic density of DM that can not find another DM to annihilate.

if the expansion rate is much faster than the $\chi \chi \rightarrow ff$ rate, χ never find each other.

• Which candidates do we have for WIMPS?

- Which candidates do we have for WIMPS?
 - LSP in susy models: neutralinos, gravitinos, axinos, singlinos...

- Which candidates do we have for WIMPS?
 - LSP in susy models: neutralinos, gravitinos, axinos, singlinos...
 - LKP in some extra dimensional models

- Which candidates do we have for WIMPS?
 - LSP in susy models: neutralinos, gravitinos, axinos, singlinos...
 - LKP in some extra dimensional models
 - In models of little Higgs with T-parity

- Which candidates do we have for WIMPS?
 - LSP in susy models: neutralinos, gravitinos, axinos, singlinos...
 - LKP in some extra dimensional models
 - In models of little Higgs with T-parity
 - sterile neutrino

- Which candidates do we have for WIMPS?
 We love funny names
 - LSP in susy models: neutralinos, gravitinos, axinos, singlinos...
 - LKP in some extra dimensional models
 - In models of little Higgs with T-parity
 - sterile neutrino

Ways to detect DM

