
Exercises 2

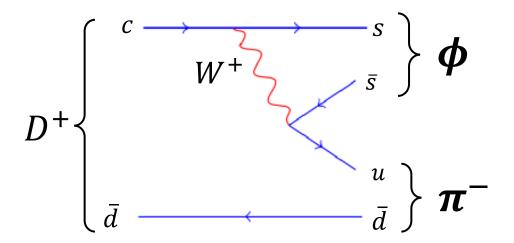
Example

Draw a Feynman diagram for the weak decay $\mathrm{D}^+ \to \phi \pi^+$

- A) Identify the quarks (from tables) needed in the "initial" state:
- D^+ $(c\bar{d})$

- B) Identify the quarks (from tables) needed in "final" state:
- ϕ $(s\bar{s})$
- π^+ $(u\bar{d})$
- C) There is a \bar{d} in both the initial and final state, so, good chance it's just a spectator quark in the decay
- D) The charm quark does not appear in the final state, **so it MUST have decayed**! Have the c-quark decay by emitting a W boson, and then the W boson decaying into a quark + antiquark.

- ☐ I need to get an "s" quark in the final state, so let me try c→sW⁺ (Must be a W⁺ by charge conservation)
- \Box I have s, \bar{d} in final state, just need to get an \bar{s} and u!
- \square Can W⁺ $\rightarrow \bar{s} u$?


We have all the quarks we need, but we need the \bar{s} from W+ to combine with the s from charm decay. And u quark to combine with \bar{d} . How can we do that?

Example

Draw a Feynman diagram for the weak decay $\mathrm{D}^+ \to \phi \pi^+$

- A) Identify the quarks (from tables) needed in the "initial" state:
- D^+ $(c\bar{d})$

- B) Identify the quarks (from tables) needed in "final" state:
- ϕ $(s\bar{s})$
 - π^+ $(u\bar{d})$
- C) There is a \bar{d} in both the initial and final state, so, good chance it's just a spectator quark in the decay
- D) The charm quark does not appear in the final state, **so it MUST have decayed**! Have the c-quark decay by emitting a W boson, and then the W boson decaying into a quark + antiquark.

☐ Draw it as an internal W diagram!

Exercises with Feynman diagrams, Weak decays

Using the Table on the next page to draw the following Feynman diagrams

- Draw a Feynman diagram for the weak decay $B^- \to D^0 \pi^-$.
- Draw a Feynman diagram for the weak decay $D^0 \to K^+K^-$.
- Draw a Feynman diagram for the weak decay $D_{\mathcal{S}}^+ o \phi \pi^+$.
- Draw a Feynman diagram for the weak decay $K^+ \to \pi^+ \pi^0$.
- Draw a Feynman diagram for the weak decay $\bar{B}^0 \to D^-\pi^+$.
- Draw a Feynman diagram for the weak decay $n \to p \pi^-$.
- Draw a Feynman diagram for the weak decay $\Lambda_b^0 \to \Lambda_c^+ \pi^-$.

Some Mesons

Particle	Quarks
π^+	$(u\bar{d})$
π^-	$(\bar{u}d)$
π^0	$(u\bar{u})$, or $(d\bar{d})$
K ⁺	$(u\bar{s})$
K ⁻	$(\bar{u}s)$
K_S^0	$(s\bar{d})$ or $(\bar{s}d)$
D^+	$(car{d})$
D ⁻	$(\bar{c}d)$
D^0	$(c\overline{u})$
$\overline{D}{}^{0}$	$(\bar{c}u)$
D_s^+	$(c\bar{s})$
D_s^-	$(\bar{c}s)$

Particle	Quarks
B^+	$(\overline{b}u)$
B ⁻	$(b\bar{u})$
B^0	$(\bar{b}d)$
$ar{B}^{0}$	$(b\bar{d})$
B_S^0	$(\bar{b}s)$
$ar{B}_S^{0}$	$(b\bar{s})$
φ	$(s\bar{s})$
J/ψ	$(c\bar{c})$
Υ	$(bar{b})$

Some Baryons

Particle	Quarks
p	uud
n	udd
Δ^{-}	ddd
Δ^0	udd
Δ^+	uud
Δ++	иии
Λ	sud
Λ_c^+	cud
Λ_b^0	bud

Quarks

Particle	Charge
d	-1/3
u	+2/3
S	-1/3
С	+2/3
b	-1/3
t	+2/3

Antiquarks have opposite charge to the quarks