Feynman diagrams and the Weak Force

S. Blusk

Quarknet 2023

Syracuse University

Aug 14-16, 2023

The Standard Model

3 families of quarks & leptons (differ only by their masses)
 3 forces (Strong, EM, Weak), each with their own set of force carriers
 Conservation Laws / Symmetries dictate how these particles interact

That's it, in a nutshell!

Part I Feynman diagrams and how to understand them

Preliminary

In particle physics, we universally use "eV" units, and usually it's MeV, GeV or even TeV! (1 eV = 1.6 x 10⁻¹⁹ J)

□ Energy units: [MeV], [GeV]
□ Since $E = mc^2 \Rightarrow m = E/c^2$ □ Mass units: [Energy] / $c^2 \Rightarrow$ [MeV/c²], [GeV/c²]
□ Momentum units: [MeV/c], [GeV/c]

Feynman Diagrams

□ Provide a means to represent a given process (interaction or decay)
 □ Feynman rules: Allow to go from cartoon → Computing *σ* or *Γ*.

Let's begin with interactions

Feynman Diagrams

□ Provide a means to represent a given process (interaction or decay)
 □ Feynman rules: Allow to go from cartoon → Computing *σ* or *Γ*.

Whallah, a Feynman diagram 🙂

What kind of interaction does this represent?
 ELECTROMAGNETIC INTERACTION (how do we know this?)
 A detail: Antiparticles have their arrows drawn backward in time.

Key parts of the Feynman rules

Collision in the "center of mass"

Can show that for moderately high energy $q^2 \approx 2p^2 \sin^2(\theta/2)$

$$\frac{d\sigma}{d\theta}(e^+e^- \to e^+e^-) \propto \frac{g_e^4}{p^4 \sin^4(\theta/2)}$$

14

strongly peaked at small angles!

15

An important detail I skipped

□ Must include ALL possible diagrams, so this one also needs to be computed and included in the calculation.

Oh, and what about this?

Luckily: Every extra photon being exchanged is suppressed by ~100X!

Other Feynman diagrams, EM Interactions

Example of Feynman diagram (1)

What force is responsible for this interaction?

Example of Feynman diagram (2)

What force is responsible for this interaction? How does one "collide gluons" ?

Example of a strong decay

What signals to you that this is a decay mediated by the strong interaction?

Conservation Laws

- Various quantities must be conserved at each of the vertices.
- A partial list of conserved quantities for BOTH EM and Strong Forces

Conserved quantity
Energy
Linear Momentum
Angular momentum
Electric charge
Color charge (Strong force only, next slide)
Quark or lepton " flavor "

If ANY of these are violated, the process cannot occur.

Conservation of "strong" charge

What does conservation of color charge mean?
 Quarks carry "strong charge": 3 values
 Colorful idea: red(r), green(g), blue(b)

□ Net color charge needs to be preserved at each vertex.

□ Gluons carry "color-anticolor"
 □ Of the fundamental particles:
 □ Only quarks and gluons carry color charge.
 □ Leptons, photons, W[±], Z⁰, H⁰ have no color.
 → Cannot directly interact with a gluon!

Questions

Is this a valid Feynman diagram? Why or why not?

Is this a valid Feynman diagram? Why or why not?

□ If YES, what can you say about the colors allowed for q and \overline{q} ? And for t and \overline{t} ?

Hadrons, baryons and mesons

Hadrons: Particles containing quarks.

All known hadrons have zero net color

Conventional baryon (proton) U d U

Conventional meson (pion)

Any 3 quarks (except top) w/ different color can form a baryon that should exist in nature

Any quark + antiquark (with color-anticolor) can form a meson that should exist in nature

Non-conventional hadrons

 In recent years, strong evidence of tetraquarks and pentaquarks, much of it spear-headed by LHCb

The nature of these states still under active investigation: tightly bound or molecular?