Neutrino History and Mystery Time Line

Rick Dower 8/13/2019

- 1914 James Chadwick observes continuous energy spectrum in β decay.
- 1927 and 1929 Continuous β decay energy spectrum confirmed.
- 1930 Wolfgang Pauli suggests a "neutron" in nucleus as part of beta-decay to account for continuous beta energy spectrum and nuclear spin statistics discrepancies.
- 1932 James Chadwick demonstrates the existence of a neutron (with mass comparable to proton) in nuclei.
- 1934 Enrico Fermi proposes a theory for β decay and renames Pauli's "neutron" a "neutrino."
- 1936 Carl Anderson and Seth Neddermeyer discover muon.
- 1940 E. J. Williams and G. E. Roberts are the first to observe $\mu^+ \rightarrow e^+$ + neutral(s) in cloud chamber
- 1941-1942 F. Rassetti, B. Rossi, N. Nereson measure muon mean lifetime with increasing accuracy with coincidence and anti coincidence particle counters: $\tau_{\mu} = 2.15 \pm 0.07 \ \mu s$
- 1945 Bruno Pontecorvo suggests looking for neutrino interaction $\nu_e + {}^{37}_{17}\text{Cl} \rightarrow e^- + {}^{37}_{18}\text{Ar}$ followed by ${}^{37}_{18}\text{Ar} \rightarrow {}^{\text{EC}} {}^{37}_{17}\text{Cl} + e^- + \gamma$ $(t_{1/2} = 35 \text{ d})$
- 1947 Cecil Powell, *et al.* discover pion and observe decay to muon.
- 1956 Fred Reines and Clyde Cowan detect electron anti-neutrinos from the Savannah River nuclear reactor: anti-v_e + p⁺ \rightarrow n + e⁺ followed immediately by e⁺ + e⁻ \rightarrow γ + γ then several µs later n + ${}^{108}_{48}$ Cd \rightarrow ${}^{109m}_{48}$ Cd \rightarrow ${}^{109m}_{48}$
- 1956 T. D. Lee and C. N. Yang point out lack of evidence for parity conservation in weak interactions. C. S. Wu, *et al.* demonstrates parity non-conservation for β decay of Co-60 nuclei. R. Garwin, L. Lederman, and M. Weinrich demonstrate parity violation for $\pi^+ \rightarrow \mu^+ + \nu$ and $\mu^+ \rightarrow e^+ + 2\nu$

- 1958 Bruno Pontecorvo suggests that a supernova would produce a burst of neutrinos.
- 1959 Bruno Pontecorvo suggest possible distinction between v_e and v_{μ} .
- 1962 Leon Lederman, Jack Steinberger, and Melvin Schwartz observe muon neutrinos
- 1960s Bruno Pontecorvo develops the possibility of neutrino oscillations.
- 1964 Ray Davis works on detecting solar v_e neutrinos with tanks of C₂Cl₄ (perchloroethylene) in a limestone mine.
- 1970 Ray Davis begins solar neutrino experiment in Homestake mine in Lead, SD. He finds about 1/3 as many electron neutrino interactions as predicted by John Bachall's theory of solar energy production.
- 1973 Weak neutral currents observed with Gargamelle bubble chamber at CERN.
- 1975 Tau lepton observed by Martin Perl, *et al*. from e⁺e⁻ collisions at SLAC first particle of third generation.
- 1987 SN1987A supernova in the Large Magellanic Cloud produced neutrinos that are detected by IMB detector near Cleveland and by Kamioka Nucleon Decay Experiment detector in Japan
- 1998 Super-Kamiokande detector (50,000 tonnes of ultrapure water) provides evidence for neutrino oscillations and a solution to the "solar neutrino problem."
- 2000 DONUT experiment at Fermilab detects v_{τ} in nuclear emulsions.
- 2001 SNO (Sudbury Neutrino Observatory) detector (1000 tonnes of heavy water) provides evidence for neutrino oscillations from the reactions: $v_e + n \rightarrow p^+ + e^-$ and (any v) + d → p⁺ + n. Analysis of these interactions confirms oscillation of solar neutrinos.