Particle Physics in a Nutshell

Tao Xu University of Oklahoma July 24, 2023

QuarkNet

What are particles?

• All the matter around us today is made of three type of particles:

J

• "up" quark,
$$Q = +\frac{2}{3}$$

- "down" quark, $Q = -\frac{1}{3}$
- electron, Q = -1
- They are fundamental, cannot be divided

Atom

What is particle physics? a reductionist perspective

Particle physics is the branch of physics that studies the fundamental particles that constitute the universe and the forces through which they interact.

Fundamental Forces

• Strong force: binding force for the formation of proton and neutron

- **Electromagnetic force:**
 - Electric force between charges
 - Magnetic force between magnets and charge currents

Decreasing strength

Image: BNL

Fundamental Forces

- Weak force: responsive for the radiative decay of particles
 - Example: the neutron decay into proton

Gravitational force: attractive force between massive objects

Decreasing strength

Fundamental Forces

- **Strong force:** binding force for the formation of proton and neutron
- **Electromagnetic force:**
 - Electric force between charges
 - Magnetic force between magnets and charge currents
- Weak force: responsive for the radiative decay of particles
- **Gravitational force:** attractive force between massive objects

Described by the Standard Model of particle physics

particles are light

$$1 \text{ eV} \simeq 2 \times 10^{-33} \text{ gra}$$

Fermions in the table are matter particles

Bosons in the table are exchanged to mediate the force

Gluon mediates the strong force.

Photon mediates the electromagnetic force.

W and Z bosons mediate the weak force.

Higgs boson is responsible for generating masses in the **Standard Model.**

"Higgs Mechanism"

Stable particles making up ordinary matter

There is also a neutrino which interacts very weakly.

Two more copies of the first generation with difference in their masses.

- We have Quantum Field Theory as a successful theoretical tool to describe the Quantum mechanics of relativistic particles
 - accuracy to 0.000000001 for quantum electrodynamics.
- For unstable particles, we find a way to produce them in particle colliders and study their decay.

Standard Model of Elementary Particles

Large Hardron Collider

- Colliding Proton and Ion beams
- LHC circumference of 26.7 km
- Four experiments
 - ATLAS
 - CMS
 - ALICE
 - LHCb

ATLAS and CMS experiments

Picture of ATLAS detector

Structure of CMS detector

Higgs boson decay into two photons a particle scattering event contains a lot of particles

Data recorded: 2012-May-13 20:08:14.621490 GMT Run/Event: 194108 / 564224000

Discovery of the Higgs boson at 125 GeV

Roadmap of Particle Discoveries

Key particle discoveries

bottom quark

Higgs boson

What's next?

- Build a more powerful collider to produce unknown constituents of matter. Look for heavier particles and higher energy scales.
- Perform precise measurements using more data and higher detector sensitivity. Study rare processes and possible modification from new physics beyond the Standard Model.
- Observe particles from space to understand the source and the propagation of particles. Explore particle physics in the current and early universe.

"Energy Frontier"

"Intensity Frontier"

"Cosmic Frontier"

The universe as a Particle Lab

Dark Energy Accelerated Expansion

Image: NASA/WMAP

The content of the universe

Ordinary matter 4.9% Dark matter 26.8% Dark energy 68.3%

What is Dark Matter?

The Rotational Curve stars rotating faster than expected

additional gravitation from Dark Matter

 $v(R) \propto$

Expected from the visible disk

40,000 30,000 20,000

Distance (light years)

24

Image: Mario De Leo

Bullet Cluster

Distribution of mass

Distribution of gas (only luminous mass)

Image:

X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical: NASA/STScI; Magellan/U.Arizona/D.Clowe et al.; Lensing Map: NASA/STScI; ESO WFI; Magellan/U.Arizona/D.Clowe et al.

Bullet Cluster

Ordinary Matter described by the **Standard Model**

Distributions don't match. They are from different components of galaxies.

Dark Matter Particle Searches

Produce DM at particle collider Observe DM annihilate into visible matter

Detect DM scattering in Lab

Collider Searches

This is the distribution in the perpendicular direction to the beams. The total momentum on this plane from all particles is zero.

Image: CMS

Missing Energy Et = 227.30 GeV

Momentum conservation predicts Dark Matter signal in the form of invisible (missing) energy momentum.

Indirect Detection

Dark Matter generate visible particles from locations with large abundance, for example the center of the Milky Way.

Image: NASA

If Dark Matter annihilation produces photons, we expect to see an excess of gamma-rays from the center of the galaxy.

Direct Detection

Dark Matter interact with target detectors placed in extremely silent environments underground.

We know the local Dark Matter abundance near earth. If Dark Matter is Weakly-Interacting Massive Particle, about one Dark Matter particle in a coffee mug.

The Particle Soup

- The expanding universe used to be denser and hotter,
 - At the highest temperature, all particles are produced as massless relativistic particles
 - The universe was like a soup of particles in thermal equilibrium
- Particle interactions determine the very beginning of the cosmic expansion. We infer the early universe with relic particles today.

Big Bang

Image: Particle Data Group

Open Questions in Particle Physics an incomplete list

- What stabilizes the mass of the Higgs boson?
- What is the origin of neutrino mass?
- What is the next energy scale beyond the Standard Model?
- Why is there a matter-antimatter asymmetry in the universe?
- What is the nature of Dark Matter?

Beyond the Standard Model

both challenges and opportunities ahead for us

Thank you!

