

CSU HEPPA Group and the Deep Underground Neutrino Experiment

Prof. Mike Mooney Colorado State University

QuarkNet 2020 CSU STEP UP Virtual Workshop

August 5th, 2020

- Particle physics explores the fundamental constituents of matter and energy, the interactions between them, and the nature of space and time.
- It reveals the profound connections underlying everything we see, including the smallest and the largest structures in the Universe.

Mysteries of Particle Physics

Still many open questions

- We still don't understand the nature of 95% of the universe
 - What is dark matter?
 - What is dark energy?
- Gravity unexplained by Standard Model
 - Graviton? New theory?

- Do neutrinos of the Standard Model mix with other states?
 - Are there sterile neutrinos?
- What is the ordering of the neutrino mass states?
- Origin of matter-antimatter asymmetry in universe?

Mysteries of Particle Physics

Still many open questions

- We still don't understand the nature of 95% of the universe
 - What is dark matter?
 - What is dark energy?
- Gravity unexplained by Standard

Big Focus of CSU HEPPA Group!

- Do neutrinos of the Standard Model mix with other states?
 - Are there sterile neutrinos?
- What is the ordering of the neutrino mass states?
- Origin of matter-antimatter asymmetry in universe?

CSU HEPPA Group

HEPPA Group Aug. 2016 (some missing 😞)

Aug. 2017

Have Physics, Will Travel!

CSU HEPPA Faculty

- ◆ Prof. Mike Mooney
 - MicroBooNE, SBN, DUNE
- Prof. Norm Buchanan
 - NOvA, DUNE
- Prof. Bob Wilson
 - SBN, DUNE, T2K (formerly)
- ◆ Prof. Walter Toki retired
 - T2K
- Prof. John Harton
 - DRIFT, DUNE
- Prof. Bill Fairbank
 - Closely related, but work is on *atomic physics* (EXO-200/nEXO, neutrinoless double beta decay experiments)

Walter

John

7

CSU HEPPA Faculty

- Prof. Mike Mooney
 - MicroBooNE, SBN, DUNE
- Prof. Norm Buchanan
 - NOvA, DUNE
- Prof. Bob Wilson
 - SBN, DUNE, T2K (formerly)

New Hire: Josh Berger Assistant Professor

Research Focus on HEP Theory (Neutrinos, Dark Matter)

Mike

Bob

John

XO-200/nEXO,

Norm

Mooney Group

Mike Mooney Assistant Professor

Ivan Caro Terrazas Graduate Student

Ryan LaZur Graduate Student

Justin Mueller Graduate Student

Lane Kashur **Graduate Student**

Alex Flesher

Undergraduate

Erik Klemm *Undergraduate*

Sean Coleman **Undergraduate**

David Durney Undergraduate

- Experiments: MicroBooNE, SBN, DUNE
- Interests: LArTPC R&D, developing novel reconstruction/calibration techniques, neutrino cross section measurements, neutrino oscillation physics

Mooney Group

Mike Mooney Assistant Professor

Lane Kashur

Ivan Caro Terrazas Graduate Student

Ryan LaZur Graduate Stud

Hannah Rogers Former Postdoc

Now Assistant Professor at St. Catherine University

Graduate Student Undergraduate

Erik Klemm **Undergraduate**

Sean C Undera

Experiments: MicroBooNE, SBN, DUNE

Alex Flesher

Interests: LArTPC R&D, developing novel reconstruction/calibration techniques, neutrino cross section measurements, neutrino oscillation physics 10

Why Care About Neutrinos?

... They're Everywhere!

- Many open questions focus on least well-known (discovered) particle: the neutrino (v)
 - Elusive nature due to weak interaction with matter
- Produced everywhere:
 - Atmosphere
 - Nuclear reactors
 - Particle accelerators
 - Earth's interior
 - Sun (and other stars)
 - Supernovae
 - Big Bang

• One of the biggest experimental surprises of last century: neutrinos **oscillate** from one flavor to another

SNO Experiment: <u>Solar</u> Neutrino Oscillation

Super-Kamiokande Experiment: <u>Atmospheric</u> Neutrino Oscillation

• One of the biggest experimental surprises of last century: neutrinos **oscillate** from one flavor to another

Super-Kamiokande Experiment: <u>Atmospheric</u> Neutrino Oscillation

 Neutrinos oscillate → neutrino flavors mix → neutrinos have mass! Not predicted by Standard Model!

$$\begin{array}{ll} \textbf{Two-Flavor} \\ \textbf{Approximation:} & P_{\alpha \rightarrow \beta, \alpha \neq \beta} = \sin^2(2\theta) \sin^2 \left(1.27 \frac{\Delta m^2 L}{E} \frac{[\text{eV}^2] \, [\text{km}]}{[\text{GeV}]} \right) \end{array}$$

Open question: is neutrino mass ordering "normal" or "inverted"?

16

We Are Made of <u>Matter</u>

- <u>Open question</u>: do neutrinos **violate CP** (charge-parity)?
 - Or: do neutrinos and antineutrinos have different oscillation probabilities? (smoking-gun feature of non-zero δ_{CP})
 - Could explain matter-antimatter asymmetry in universe
 - ... and as a result, why we exist!
 - Not enough quark sector CP violation to explain this asymmetry
 - If so, precise measurement of δ_{CP} tells us details of mechanism
 - **If not**, there must be **new physics** to explain asymmetry!

$$P(\nu_{\alpha} \to \nu_{\beta}) \stackrel{?}{=} P(\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta})$$
$$\stackrel{?}{\sin \delta = 0}$$

The LArTPC and DUNE

Introducing... the LArTPC

- Accelerator v physics detector needs:
 - Excellent calorimetry
 - High spatial resolution
 - Scalability
- These are all traits of the LArTPC!
 - Liquid Argon Time Projection Chamber
- Excellent calorimetry important for event reconstruction, particle ID (dE/dx)
- **High spatial resolution** allows for background rejection and particle ID
- ◆ **Scalability** → large detectors
 - **DUNE:** 40 kt LArTPC!

Introducing... the LArTPC

- Accelerator v physics detector needs:
 - Excellent calorimetry
 - High spatial resolution
 - Scalability
 - These are all traits of the LArTPC!
 - Liquid Argon Time Projection Chamber
- Excellent calorimetry important for event reconstruction, particle ID (dE/dx)
- **High spatial resolution** allows for background rejection and particle ID
- ◆ **Scalability** → large detectors
 - **DUNE:** 40 kt LArTPC!

 Raw data representations are images with very fine-grained spatial resolution (~1 mm)!

Signal Formation

NEUTRINO EXPERIMENT

Signal Formation

3D Event Reconstruction

- Combine two/three 2D wire plane views \rightarrow reconstruct event in **3D**
 - <u>Below</u>: **neutrino interaction** event from **data**

Introducing DUNE

- "Deep Underground Neutrino Experiment"
 - 1300 km baseline
 - Large (70 kt) LArTPC far detector 1.5 km underground
 - Near detector w/ LAr component

- Primary physics goals:
 - v oscillations (v_{μ}/\bar{v}_{μ} disappearance, v_e/\bar{v}_e appearance)
 - $\boldsymbol{\delta}_{CP}, \boldsymbol{\theta}_{23}, \boldsymbol{\theta}_{13}$
 - Ordering of v masses
 - Supernova burst neutrinos
 - BSM processes (baryon number violation, NSI, etc.)

◆ **1157 collaborators** from 197 institutions in 33 countries (w/ CERN)!

May 2019 Collaboration Meeting

◆ **1157 collaborators** from 197 institutions in 33 countries (w/ CERN)!

May 2020 Collaboration Photo

DUNE's Neutrino Source

DUNE's Neutrino Source: LBNF Beam

DUNE's Neutrino Source

DUNE Near Detector (ND)

DUNE ND Overview

- DUNE ND located 574 m from neutrino beam target
- Primary purpose is to characterize neutrino beam and constrain cross section uncertainties in long-baseline neutrino oscillation analysis

DUNE ND Complex

SAND ND-GAr ND-LAr

- DUNE ND complex: multiple complementary systems
 - <u>ND-LAr</u>: modular, pixelated LArTPC
 - Acts as primary target and is most similar to FD (both contain LAr)
 - <u>ND-GAr</u>: high-pressure GArTPC surrounded by ECAL and magnet
 - Constrains nuclear interaction model; muon spectrometer
 - <u>SAND</u>: tracker surrounded by ECAL and magnet
 - On-axis monitor of beam spectrum
- ND-LAr/ND-GAr can move off-axis (DUNE-PRISM)

DUNE Far Detector (FD)

- Four 17-kt modules deployed in stages
- <u>Two far detector designs</u>: single phase (LAr) and dual phase
 (LAr+GAr) first module will be single phase
- Single phase FD uses modular drift cells (scalable)
 - Suspended Anode and Cathode Plane Assemblies (APAs and CPAs)
 - Wrapped wire to reduce # of readout channels, cabling complexity
 - 3.6 m drift, 500 V/cm field; **photon detectors** for non-beam triggering

ProtoDUNEs

- Two 1-kt "ProtoDUNEs" in charged test beam at CERN (one per FD design)
- Test of component installation, commissioning, and performance
- ProtoDUNE-SP operating since 2018; ProtoDUNE-DP since 2019

ProtoDUNEs

- Two 1-kt "ProtoDUNEs" in charged test beam at CERN (one per FD design)
- Test of component installation, commissioning, and performance
- ProtoDUNE-SP operating since 2018; ProtoDUNE-DP since 2019

- First beam data events: **noise levels low** on all three planes
- S/N ratio > 10 in all cases (> 40 for collection plane)
- **Stable running** since first operations began in 2018

DUNE Far Site Excavation

DUNE moves to the next stage with a blast

06/24/20 | By Lauren Biron and Leah Hesla

Construction workers have carried out the first underground blasting for the Long-Baseline Neutrino Facility, which will provide the space, infrastructure and particle beam for the international Deep Underground Neutrino Experiment.

• Underground excavation for DUNE far detector has begun!

- High Energy Physics and Particle Astrophysics (HEPPA) explores some of the most fundamental questions about our universe
- CSU has an internationally recognized HEPPA research group with leadership roles in the flagship domestic HEP project (DUNE)
- Major focus of research efforts are LArTPC neutrino experiments; also research on dark matter
- We love to talk about our research almost anytime, so track us down!

Questions?

BACKUP SLIDES

 ♦ Neutrinos oscillate → neutrino flavors mix → neutrinos have mass!

 ♦ Neutrinos oscillate → neutrino flavors mix → neutrinos have mass!

Neutrino initially produced as flavor eigenstate

 ♦ Neutrinos oscillate → neutrino flavors mix → neutrinos have mass!

Neutrino propagates as mass eigenstate → oscillations

 Neutrinos oscillate → neutrino flavors mix → neutrinos have mass!

Neutrino interacts in detector as flavor eigenstate (multiple possible flavors with different probabilities)

 Neutrinos oscillate → neutrino flavors mix → neutrinos have mass!

Why Liquid Argon?

	91	Ne	Ar	Kr	Xe	Water
Boiling Point [K] @ 1atm	4.2	27.1	87.3	120	165	373
Density [g/cm³]	0.125	1.2	1.4	2.4	3	1
Radiation Length [cm]	755.2	24	14	4.9	2.8	36.1
dE/dx [MeV/cm]	0.24	1.4	2.1	3	3.8	1.9
Scintillation [y/MeV]	19,000	30,000	40,000	25,000	42,000	
Scintillation λ [nm]	80	78	128	150	175	
Approx. Cost [\$/kg]	52	330	5	330	1200	

- ♦ Argon is cheap: ~1% of atmosphere
- Dense target (more v-N interactions per unit time)
- High scintillation light yield, argon transparent to own light
- Relatively small radiation length for EM shower containment