The Hierarchy Problem

What's wrong with the Higgs boson?

Ingredients: Spacetime

- The gravitational force field

$$
\begin{aligned}
& V_{G}(r)=-\frac{G_{N} m}{r} \\
& V_{G}(r)=-\frac{G_{N} k}{d} \\
& \frac{d}{d r} V_{G}(r)=F(r)
\end{aligned}
$$

Ingredients: Spacetime

\#

- The gravitational force field

$$
V_{G}(r)=-\frac{G_{N} m}{r}
$$

- The electromagnetic force field

$$
\left.V_{E M} r\right)=-\frac{k_{e} q}{r}
$$

Ingredients: Spacetime

- Fields can move energy through space in the form of propagating waves

Ingredients: Spacetime

- Fields can move energy through space in the form of propagating waves
- Waves can be added to cancel each other out

Ingredients: Spacetime

- Fields can move energy through space in the form of propagating waves
- Waves can be added to cancel each other out... or magnify each other

Ingredients: Spacetime

- Fields can move energy through space in the form of propagating waves
- Waves can be added to cancel each other out... or magnify each other... or localize in space ..

Ingredients: Spacetime

- Fields can move energy through space in the form of propagating waves
- Waves can be added to cancel each other out... or magnify each other... or localize in space ... or become point-like

Ingredients: Spacetime

- Quantum fields support the propagation of localized (possibly point-like) fluctuations in the energy profile of the field

Ingredients: Spacetime

- Quantum fields support the propagation of localized (possibly point-like) fluctuations in the energy profile of the field
- We can thus view all particles as being excitations in their own quantum field

Quantum Field Theory in a Nutshell

- Anything that can happen, will happen with some probability

Quantum Field Theory in a Nutshell

- Anything that can happen, will happen with some probability

Quantum Field Theory in a Nutshell

- Anything that can happen, will happen with some probability
- Imagine a toy universe containing two types of particles
- Particle A
- Particle B

Quantum Field Theory in a Nutshell

- Anything that can happen, will happen with some probability
- Imagine a toy universe containing two types of particles
- Particle A
- Particle B
- This one item implies the possibility of three distinct phenomena

Quantum Field Theory in a Nutshell

- This one item implies the possibility of three distinct phenomena

1) $A \rightarrow B B$

Quantum Field Theory in a Nutshell

- This one item implies the possibility of three distinct phenomena

1) $A \rightarrow B B$

Quantum Field Theory in a Nutshell

- This one item implies the possibility of three distinct phenomena

1) $A \rightarrow B B$
2) $B B->A$

Anything that can happen, will happen with some probability

Quantum Field Theory in a Nutshell

- Diagrams like these are called "Feynman Diagrams"

1) $A->B$
2) $B B \rightarrow A$

Anything that can happen, will happen with some probability

Quantum Field Theory in a Nutshell

- Diagrams like these are called "Feynman Diagrams"

1) $A->B B$
2) $B B \rightarrow A$

"List of Things that Can Happen"
Anything that can happen, will happen with some probability
$\mathcal{L}=A B B$
3) $A B B$

Quantum Field Theory in a Nutshell

- Diagrams like these are called "Feynman Diagrams"

1) $A \rightarrow B B$

Anything that can happen, will happen with some probability

Infinite Possibilities and Probabilities

- One way to define the "mass" of particle A, is that its inverse squared be proportional to the square root of the probability of particle A propagating from some point x to some other point x^{\prime} ?

$$
\frac{1}{m_{A}^{2}} \stackrel{\text { def }}{=} \sqrt{\boldsymbol{P}\left(A \mid \boldsymbol{x} \rightarrow \boldsymbol{x}^{\prime}\right)}
$$

Infinite Possibilities and Probabilities

- In quantum theory, the square root of the probability ("amplitude"), is equal to the sum of all the independent contributing possibilities.

$$
\frac{1}{m_{A}^{2}} \stackrel{\text { def }}{=} \sqrt{\boldsymbol{P}\left(A \mid \boldsymbol{x} \rightarrow \boldsymbol{x}^{\prime}\right)}
$$

Infinite Possibilities and Probabilities

- In quantum theory, the square root of the probability ("amplitude"), is equal to the sum of all the independent contributing possibilities.

$$
\frac{1}{m_{A}^{2}} \stackrel{\text { def }}{=} \sqrt{\boldsymbol{P}\left(A \mid \boldsymbol{x} \rightarrow \boldsymbol{x}^{\prime}\right)}
$$

- This is analogous to the way probabilities of independent events add in classical probability theory

$$
\begin{aligned}
& P(10)=4 / 52 \\
& P(K Q J)=12 / 52
\end{aligned}
$$

$$
P(10 \| K Q J)=P(10)+P(K Q J)
$$

Anything that can happen, will happen with

Infinite Possibilities and Probabilities

- In quantum theory, the square root of the probability ("amplitude"), is equal to the sum of all the independent contributing possibilities.

$$
\frac{1}{m_{A}^{2}} \stackrel{\text { def }}{=} \sqrt{\boldsymbol{P}\left(A \mid x \rightarrow \boldsymbol{x}^{\prime}\right)}=\underset{x}{\bullet}{ }_{x^{\prime}}^{\bullet}+\text { ??? }
$$

Infinite Possibilities and Probabilities

- In quantum theory, the square root of the probability ("amplitude"), is equal to the sum of all the independent contributing possibilities.

$$
\frac{1}{m_{A}^{2}} \stackrel{\text { def }}{=} \sqrt{P\left(A \mid x \rightarrow x^{\prime}\right)}=\underset{x}{\bullet}{ }_{x^{\prime}}^{\bullet}+\text { ??? }
$$

Infinite Possibilities and Probabilities

- In quantum theory, the square root of the probability ("amplitude"), is equal to the sum of all the independent contributing possibilities.

$$
\frac{1}{m_{A}^{2}} \stackrel{\text { def }}{=} \sqrt{P\left(A \mid x \rightarrow x^{\prime}\right)}=\underset{x}{\bullet}{ }_{x^{\prime}}^{\bullet}+\text { ??? }
$$

Anything that can happen, will happen with some probability

Infinite Possibilities and Probabilities

- In quantum theory, the square root of the probability ("amplitude"), is equal to the sum of all the independent contributing possibilities.

$$
\begin{aligned}
\frac{1}{m_{A}^{2}} \stackrel{\text { def }}{=} \sqrt{\boldsymbol{P}\left(A \mid x \rightarrow x^{\prime}\right)}= & \underset{x}{\bullet}{ }_{x^{\prime}}^{\bullet} \\
& +\underset{x}{\bullet} \longrightarrow \longrightarrow \longrightarrow_{x^{\prime}}^{0}+? ? ? ?
\end{aligned}
$$

Infinite Possibilities and Probabilities

- In quantum theory, the square root of the probability ("amplitude"), is equal to the sum of all the independent contributing possibilities.

$$
\frac{1}{m_{A}^{2}} \stackrel{\text { def }}{=} \sqrt{P\left(A \mid x \rightarrow x^{\prime}\right)}=\underset{x}{\bullet} 0_{x^{\prime}}^{0}
$$

Infinite Possibilities and Probabilities

- In quantum theory, the square root of the probability ("amplitude"), is equal to the sum of all the independent contributing possibilities.

$$
\frac{1}{m_{A}^{2}} \stackrel{\text { def }}{=} \sqrt{P\left(A \mid x \rightarrow x^{\prime}\right)}=\underset{x}{\bullet} 0_{x^{\prime}}^{0}
$$

$$
+\underset{x}{\bullet} p \rightarrow p^{\prime} \rightarrow x_{x^{\prime}}^{0}+\ldots \ldots=\infty \quad \text { FAIL }
$$

Infinite Possibilities and Probabilities

- In quantum theory, the square root of the probability ("amplitude"), is equal to the sum of all the independent contributing possibilities.

$$
\begin{aligned}
\frac{1}{m_{A}^{2}} \stackrel{\text { def }}{=} \sqrt{P\left(A \mid x \rightarrow x^{\prime}\right)}= & \underset{x}{\bullet} \xrightarrow[x^{\prime}]{0} \\
& +\underset{x}{\bullet} \ggg \boldsymbol{x}^{\prime}
\end{aligned}
$$

> Each item on this list needs a number \boldsymbol{g} in $[0,1]$ that parameterizes the "probability" of each item "happening"

Infinite Possibilities and Probabilities

- In quantum theory, the square root of the probability ("amplitude"), is equal to the sum of all the independent contributing possibilities.

$$
\begin{aligned}
& \frac{1}{m_{A}^{2}} \stackrel{\text { def }}{=} \sqrt{\boldsymbol{P}\left(A \mid \boldsymbol{x} \rightarrow \boldsymbol{x}^{\prime}\right)}= \\
& \stackrel{\bullet}{\bullet} \longrightarrow \boldsymbol{x}^{\prime} \\
& \begin{array}{|c}
g^{0} \\
g^{2} \\
g^{4} \\
\hline
\end{array} \\
& \begin{array}{l}
g^{2} \\
g^{4}
\end{array}
\end{aligned}
$$

$$
+\ldots .
$$

Anything that can happen, will happen with some probability

Infinite Possibilities and Probabilities

- In quantum theory, the square root of the probability ("amplitude"), is equal to the sum of all the independent contributing possibilities.

$$
\frac{1}{m_{A}^{2}} \stackrel{\text { def }}{=} \sqrt{\boldsymbol{P}\left(A \mid \boldsymbol{x} \rightarrow \boldsymbol{x}^{\prime}\right)}=
$$

$$
\begin{array}{|c|}
\hline g^{0} \\
g^{2} \\
g^{4} \\
\hline
\end{array}
$$

$$
2=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots
$$

$$
+\ldots .
$$

Infinite Possibilities and Probabilities

- In quantum theory, the square root of the probability ("amplitude"), is equal to the sum of all the independent contributing possibilities.

$$
\frac{1}{m_{A}^{2}} \stackrel{\text { def }}{=} \sqrt{\boldsymbol{P}\left(A \mid \boldsymbol{x} \rightarrow \boldsymbol{x}^{\prime}\right)}=\underset{x}{\bullet}{ }_{x^{\prime}}^{\bullet}
$$

$$
\sum_{n=0}^{\infty} g^{n}=\frac{\mathbf{1}}{\mathbf{1}-\boldsymbol{g}}
$$

Anything that can happen, will happen with

$$
+\ldots .
$$

$$
\mathcal{L}=\boldsymbol{g} A B B
$$

Quantum Particles: Feynman's Picture

- In quantum theory, the square root of the probability ("amplitude"), is equal to the sum of all the independent contributing possibilities.

$$
\frac{1}{m_{A}^{2}} \stackrel{\text { def }}{=} \sqrt{P\left(A \mid x \rightarrow x^{\prime}\right)}=\underset{x}{\bullet}{\underset{x^{\prime}}{\prime}}_{0}
$$

$$
\sum_{n=0}^{\infty} g^{n}=\frac{\mathbf{1}}{1-g}
$$

$\frac{1}{m_{0}^{2}}$

$$
\frac{1}{m_{0}^{2}} g \bigodot p g \frac{1}{m_{0}^{2}}
$$

$$
\frac{1}{m_{0}^{2}} g \curvearrowright g \frac{1}{m_{0}^{2}} g \rho^{\prime} g \frac{1}{m_{0}^{2}}
$$

$$
+\ldots \ldots
$$

$$
\mathcal{L}=\boldsymbol{g} A B B
$$

Quantum Particles: Feynman’s Picture

- In quantum theory, the square root of the probability ("amplitude"), is equal to the sum of all the independent contributing possibilities.

$$
\begin{aligned}
& \frac{1}{m_{A}^{2}} \stackrel{\text { def }}{=} \sqrt{\boldsymbol{P}\left(A \mid \boldsymbol{x} \rightarrow \boldsymbol{x}^{\prime}\right)}=\frac{1}{\boldsymbol{m}_{0}^{2}-\boldsymbol{g}^{2}(\mathscr{P}} \\
& \begin{array}{c}
\frac{1}{m_{0}^{2}} \\
\frac{1}{m_{0}^{2}} g(p) g \frac{1}{m_{0}^{2}} \\
\frac{1}{m_{0}^{2}} g \rho \frac{1}{m_{0}^{2}} g\left(p^{\prime} g \frac{1}{m_{0}^{2}}\right.
\end{array} \\
& \sum_{n=s}^{\infty} s^{n}=\frac{1}{1-g}
\end{aligned}
$$

Quantum Particles: Feynman's Picture

- In quantum theory, the square root of the probability ("amplitude"), is equal to the sum of all the independent contributing possibilities.

$$
\frac{1}{m_{A}^{2}} \stackrel{\text { def }}{=} \sqrt{\boldsymbol{P}\left(A \mid \boldsymbol{x} \rightarrow \boldsymbol{x}^{\prime}\right)}=\frac{1}{\boldsymbol{m}_{0}^{2}-\boldsymbol{g}^{2}(D}
$$

$$
p=\int_{0}^{\infty} d p f(p)
$$

Anything that can happen, will happen with some probability

$$
\mathcal{L}=\boldsymbol{g} A B B
$$

Quantum Particles: Feynman's Picture

- In quantum theory, the square root of the probability ("amplitude"), is equal to the sum of all the independent contributing possibilities.

$$
m_{A}^{2}=m_{0}^{2}-g^{2} \int_{0}^{\infty} d p f(p)
$$

$$
\rho=\int_{0}^{\infty} d p f(p)
$$

Quantum Particles: Feynman's Picture

- This formula assumes that this theory does not change when the momentum scale of the theory is very high.

$$
m_{A}^{2}=m_{0}^{2}-g^{2} \int_{0}^{\infty} d p f(p)
$$

$$
\text { P }=\int_{0}^{\infty} d p f(p)
$$

Quantum Particles: Feynman's Picture

- Suppose there was some new particle C with a very heavy mass

$$
m_{A}^{2}=m_{0}^{2}-g^{2} \int_{0}^{\infty} d p f(p)
$$

Anything that can happen, will happen with some probability

$$
\mathcal{L}=\boldsymbol{g} A B B+\boldsymbol{g} B C C+\boldsymbol{M}_{\boldsymbol{C}} C C
$$

Quantum Particles: Feynman's Picture

- Suppose there was some new particle C with a very heavy mass
- We should define some "cutoff" momentum scale $\boldsymbol{\Lambda}$ at which point we can claim to be agnostic about the "deeper" theory

$$
\begin{aligned}
m_{A}^{2}=m_{0}^{2}- & g^{2} \int_{0}^{\Lambda} d p f(p) \\
& -g^{2} \int_{\Lambda}^{\infty} d p f(p)
\end{aligned}
$$

Quantum Particles: Feynman's Picture

- Suppose there was some new particle C with a very heavy mass
- We should define some "cutoff" momentum scale $\boldsymbol{\Lambda}$ at which point we can claim to be agnostic about the "deeper" theory

$$
\begin{aligned}
& m_{I R}^{2}(\Lambda)=m_{0}^{2}-g^{2} \int_{0}^{\Lambda} d p f(p) \\
& m_{U V}^{2}(\Lambda)=-g^{2} \int_{\Lambda}^{\infty} d p f(p)
\end{aligned}
$$

Anything that can happen, will happen with some probability

$$
\mathcal{L}=\boldsymbol{g} A B B
$$

The Doctrine of Effective Theories

- For any theory of nature it must be true that $m_{I R}^{2}(\boldsymbol{\Lambda}) \gg \boldsymbol{m}_{U V}^{2}(\boldsymbol{\Lambda})$
- Also known as the principle of scale separation

$$
m_{A}^{2}=m_{I R}^{2}(\Lambda)+m_{U V}^{2}(\Lambda)
$$

$$
\begin{aligned}
& m_{I R}^{2}(\Lambda)=m_{0}^{2}-g^{2} \int_{0}^{\Lambda} d p f(p) \\
& m_{U V}^{2}(\Lambda)=-g^{2} \int_{\Lambda}^{\infty} d p f(p)
\end{aligned}
$$

