Part II The Weak Force

Preliminary

As we progress through, you'll want to take note of the charges of the various quarks.

	Family		
Charge	1	2	3
-1/3	d	S	b
+2/3	u	C	t

Antiquarks have opposite charge to the quarks

 $M_W \cong 80 \text{ GeV}/c^2$ For typical scattering $q^2 \ll M_W^2 c^2$

time

Will bring in a factor of $\frac{1}{M_W^4 c^4}$ or $\frac{1}{M_Z^4 c^4}$ and both the W and Z masses are HUGE!

So, why are the weak interactions so very feeble?

Because this **large** M_W^4 factor (always) shows up in Weak interactions or decays! (If Z boson, then M_Z^4)

time

Consequence #1) Small cross-sections:

Example, a neutrino can pass through the entire Earth without interacting!

Just to set the scale

Strong force $pp \rightarrow X @ 5+5 \text{ GeV}$ $\sigma \sim 5 \times 10^{-26} \text{ cm}^2$

Weak force $\nu p \rightarrow X$ $\sigma \sim 10^{-38} \text{cm}^2 (\text{E}_{\nu} = 1 \text{ GeV})$

 $\sigma_{strong} \sim 10^{12} \times \sigma_{Weak}$

To put the ratio of "strength" in perspective, imagine shooting a grain of sand at: Another grain of sand (Weak) The Sun (Strong) and trying to get a strike!

Grain of sand R~0.7 mm

Decays

Decay rates

$$N = N_0 e^{-\Gamma t}$$
$$N = N_0 e^{-t/\tau}$$

$$\tau = \frac{1}{\Gamma} = \text{Lifetime}[s]$$

Short lifetimes \Leftrightarrow Large decay rates

7

Aside: Lifetime t is related to half-life by $t_{\frac{1}{2}} = \tau \ln(2)$

Simplest weak decay

8

Simplest weak decay

Muon decay $\mu^- \rightarrow \nu_\mu e^- \overline{\nu}_e$

All of the same factors enter into the Feynman diagram for decays

=> Weak decay rates very small (say, compared to EM or Strong decays) Since $\tau = 1 / \Gamma$ this mean weak decays result in **LARGE LIFETIMES!**

Can W decay into other leptons?

* There must be sufficient energy to create the lepton pair.

What about quarks?

 These quarks/antiquarks will combine to form 1 (or more) hadrons
 Also limited by energy conservation!

Particle	Quarks	Mass (MeV/c²)
π^-	$(\overline{u}d)$	139.5
D_s^-	$(\bar{c}s)$	1968
K^{-}	$(\overline{u}s)$	493.7
D^- , D^+	$(ar{c}d)$, $(car{d})$	1869
$\overline{D}{}^{0}$	$(c\bar{u})$	1865
D_s^- , D_s^+	$(\bar{c}s), (c\bar{s})$	1968

С	W^{-}	
	Parent Dau	
Mass (MeV /c²)	$n \rightarrow p + \pi^{-}$ 939.6 938.3 139.5	NO
Mass (MeV/c²)	$\overline{D}{}^{0} \rightarrow K^{+} + K^{-}$ 1865 493.7 493.7	YES
Mass (MeV/c²)	$\begin{array}{cccc} D_{S}^{+} \to & K^{+} + & D^{0} \\ 1968 & & 493.7 & 1865 \end{array}$	NO
Mass (MeV /c²)	$\overline{B}{}^{0} \rightarrow D^{+} + D^{-}_{S}$ 5279 1869 1777	YES 11

Example Weak decay (1)

Jargon we sometime use: "The \overline{u} (from the B⁻) is a spectator" (Speculations as to why?) □ What tells us this is a weak decay?

□ Weak decay is a **2-step process** □ At A: $b \rightarrow c + W^-$ □ At B: $W^- \rightarrow \overline{u} + s$

□ But, there is an additional part!

□ The $\overline{u}s$ have to "stick together" and form a K^- .

□ The $c\overline{u}$ have to "stick together" and form a D^0 .

What interaction do you think is responsible for this "binding"?

Example Weak decay (2) $B^- \rightarrow \overline{D}^0 K^-$

 \Box Here the W^- goes "internal"

□ Weak decay is a 2-step process □ At A: $b \rightarrow u + W^-$ □ At B: $W^- \rightarrow \bar{c} + s$

□ The $\overline{u}c$ bind "to form a \overline{D}^0 . □ The $s\overline{u}$ bind to form a K^- .

Both this "internal W" or "external W" (prev slide) are possible

Are there other diagrams ?

 $B^- \rightarrow \overline{D}{}^0 K^-$

Here, the initial b and \overline{u} annihilate into a W^- , and then the W^- decays into \overline{c} + s

Could also have W+

 $B^+ \rightarrow \overline{D}{}^0 K^+$ $\langle u \rangle K^+$ W^+ $\boldsymbol{B}^{+} \left\{ \begin{array}{c} \boldsymbol{\nu} \longrightarrow \cdots \longrightarrow \boldsymbol{c} \\ \boldsymbol{u} \longrightarrow \boldsymbol{c} \end{array} \right\} \overline{\boldsymbol{D}}^{\mathbf{0}}$

You must conserve electric charge at each vertex. In weak decays of heavy quarks, the charge must change by +1 unit or -1 unit! Here: $\overline{b}(+1/3) \rightarrow \overline{c}(-2/3)$, so the W MUST be +1 charge.

Computing weak decay rates (Γ)

- This is very hard for most particles, because you have to consider **ALL** possible ways it can decay!
- Suppose a particle can decay 100 ways, then what is Γ ?

 $\Gamma = \Gamma_1 + \Gamma_2 + \Gamma_3 + \dots + \Gamma_{100}$

- Moreover, part of each Γ_i calculation is: "How likely is it that the quarks will bind (via the strong force)?"
- Very hard to compute this. (in practice, not feasible in almost all cases)
- Instead, we can measure the lifetime, which is related to the width, $au=1/\Gamma$

Some particle lifetimes (Weak decays)

Particle	Quarks	Lifetime
μ^+		22 μs
π^+	(<i>ud</i> ̄)	26 ns
<i>K</i> +	(<i>us</i> ̄)	12.4 ns
K_S^0	$(s\bar{d})$	90 ps
Λ	sud	263 ps
D^0	(<i>cū</i>)	0.41 ps
D^+	(<i>cd</i> ̄)	1.03 ps
Λ_c^+	cud	0.2 ps
B^+	(b̄u)	1.64 ps
Λ_b^0	bud	1.5 ps

Unstable particles like K⁺, π^+ , μ^+ usually traverse the entire LHCb detector before decaying!

□ Micro (10⁻⁶), nano (10⁻⁹) and pico (10⁻¹²) second lifetimes may not seem very long, but they are **directly measurable**!

	Particle	τ	$\langle d \rangle \cong c \tau$	$\langle d \rangle \cong \gamma c \tau$
7	<i>K</i> +	12.4 ns	3.7 m	74 m
1	B ⁺	1.64 ps	0.5 mm	10 mm

Special Relativity \rightarrow "fast moving clocks run slow!" (time dilation!) The time dilation factor (γ) depends on the particle's energy, but in LHCb, $\gamma \approx 20$ is typical.

Some particle lifetimes (Weak decays)

Particle	Quarks	Lifetime
μ^+		22 μs
π^+	$(u\bar{d})$	26 ns
K^+	(<i>us</i> ̄)	12.4 ns
K_S^0	$(s\bar{d})$	90 ps
Λ	sud	263 ps
D^0	$(c\bar{u})$	0.41 ps
D^+	$(c\bar{d})$	1.03 ps
Λ_c^+	cud	0.2 ps
B^+	(b̄u)	1.64 ps
Λ_b^0	bud	1.5 ps

General For comparison:

- \Box EM decay: Lifetimes ~10⁻¹⁷ to 10⁻²⁰ sec
- □ Strong decay: Lifetimes ~10⁻²³ sec

These lifetimes are too short for us to measure.

Measuring lifetimes of particles that decay weakly

Build detectors with hair-thin (~50 μ m) active detection elements.

1000's of such detection elements in this "module"

Measuring lifetimes of particles that decay weakly

Put many of them in a row so that charged particles pass through many of them.

➔ VELO detector

A candidate $B_s \rightarrow \mu^+ \mu^-$ decay

A real (early) measurement

$$N = N_0 e^{-t/\tau}$$
$$\ln N = \ln N_0 - \left(\frac{1}{\tau}\right) t$$

Fitting the logN plot versus time \rightarrow Slope = $1/\tau$!

 $\tau = 1.455 \pm 0.046(stat) \pm 0.006(syst)$ ps

Backup

Some particle lifetimes (Weak decays)

Particle	Quarks	Lifetime	
μ^+		22 μs	
π^+	$(u\bar{d})$	26 ns	
<i>K</i> +	(<i>us</i> ̄)	12.4 ns	
K_S^0	$(s\bar{d})$	90 ps	
Λ	sud	263 ps	
D^0	$(c\bar{u})$	0.41 ps	
D+	$(c\bar{d})$	1.03 ps	
Λ_c^+	cud	0.2 ps	
B ⁺	(b̄u)	1.64 ps	
Λ_b^0	bud	1.5 ps	

Given Series For comparison:

- **\Box** EM decay: Lifetimes ~10⁻¹⁷ to 10⁻²⁰ sec
- □ Strong decay: Lifetimes ~10⁻²³ sec
- □ These lifetimes are too short for us to measure.

□ Often, we can measure the particle's decay "width"

$$\Box \Gamma_E = \hbar \Gamma = \hbar / \tau$$

Two examples below of strong decays

