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This exercise is adapted from G. Braun, D. Tierney, and H. Schmitzer, “How Rosalind 
Franklin Discovered the Helical Structure of DNA: Experiments in Diffraction,” The 
Physics Teacher, 49, 140-143 (March 2011). 
 
The world’s most famous x-ray diffraction photo is pictured in Figure 1. Called 
Photo 51 by Rosalind Franklin, it was published by her and R. G. Gosling (King’s 
College, London) in Nature 171, 740-741 (25 April 1953).  
 

 
Figure 1 Rosalind Franklin's Photo 51 DNA diffraction photo. The zero order and some of the first order 
diffraction images are blocked by a lead disc (white circle in center) to avoid over exposure of the film. 

This diffraction photo of hydrated sodium thymonucleate (DNA) provided crucial 
evidence supporting the double helix DNA structure proposed by James Watson and 
Francis Crick (Cavendish Laboratory, Cambridge University) based on published 
chemical clues and a physical molecular model they constructed.  As they 
acknowledged, “We have also been stimulated by a knowledge of the general nature 
of the unpublished experimental results and ideas of Dr. M. H. F. Wilkins, Dr. R. E. 
Franklin, and their co-workers” Nature 171, 737-738 (25 April 1953).  
 
In this exercise, students use the power of x-ray diffraction analysis to confirm this 
relatively simple, yet fundamentally important, molecular structure.  We start with 
the analogy of the visible light diffraction pattern of a portion of a single helix 
formed by the small coil spring from a retractable pen (Figure 2). 



 
 
Figure 2 Diffraction pattern of a coil spring     Figure 3 Laser, beam expander lenses, and spring coil 

Interpretation of this image is assisted by a projection of a right-handed circular 
helix in the y-z plane.  The parametric expressions for a particle moving in a circular 
helix about the z-axis as time t progresses are 
 

               x = Rcos(2t/T),  y = Rsin(2t/T), z = P(t/T) , as t varies continuously.  
 
R = radius of helix circle projected in the x-y plane,  
P = pitch of helix, i.e. distance between corresponding points on successive 

turns of the helix.  
T = period of the particle on the helix, i.e. time for one full turn 

 

The projection of this helix in the y-z plane is  y = Rsin(2z/P),  
which is shown in Figure 4 with y the vertical axis and z the horizontal axis.  
 
 
 

 
 
 
 
 
 
 

 
 

Figure 4 Graph of helix in the y-z plane with lines  
y = R(2z/P+2), y = R(2z/P), and y = R(2z/P-2) 
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The three parallel lines slanted to the upper right in Figure 4 approximate half of the 
sine curve shown. The slope of those lines is the slope of the tangent to the sine 
curve as it crosses the z-axis (y = 0), i.e. the derivative (dy/dz) at z = 0. The helix 
pitch angle () is the complement of the angle made by the tangent line with the  
z-axis at (0,0). 
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Lines slanted to the left at an equal angle  would approximate the other half of the 
sine curve. The angle between the two groups of lines is 2. To determine the 
diffraction pattern of these two groups of lines, we can apply Babinet’s principle: the 
diffraction pattern of an opaque body is opposite in phase, equal in amplitude, and, 
therefore, equal in intensity to that of a hole in an opaque screen of the same size 
and shape. Then the diffraction pattern of half the sine curve of the helix is 
approximately the same as the pattern of equidistant parallel lines (or equidistant 
parallel slits), i.e. the pattern of a diffraction grating with the diffraction images 
spread out perpendicular to the set of parallel lines. Applying the same reasoning to 
the parallel lines slanted to the left, we get another set of diffraction images spread 
out perpendicular to those lines.  
 
The angle between the two sets of diffraction images is, therefore, also 2.  
 
The angles from the grating to image maxima for a diffraction grating are given by  
 

sin(max) = md ,        (2) 
where m = integer 
               d = perpendicular distance between parallel lines in grating 
              = wavelength incident on grating 

 
Measuring the location of diffraction maxima on a screen and the distance from the 
helix to the screen allows the calculation of the diffraction angles max. Counting 
images outward from the zero-order maximum in the center of the pattern 
determines the integer m. With knowledge of the illuminating wavelength , one can 
calculate the grating spacing d. The helix pitch is then given by  
 

P = d/cos ,         (3) 
 
as seen in Figure 4. The helix radius R can be calculated with Equation 1. 
 
The laser beam expanded to intercept several coils of the spring (Figure 3) for 
greater uniformity in the diffraction pattern in Figure 2. A piece of black velvet 
absorbed much of the light in the center region in Figure 2 to avoid overexposure. 
 
 



 
 
Spring Coil Exercise 

1. Use a diffraction grating with known line spacing to determine the 
wavelength () of a laser. 

2. Use convex lenses to collimate and expand a beam from the laser so it will 
intercept several coils of the spring from a retractable pen. Aim the laser at a 
wall several meters away and make sure the beam is collimated. 

3. Place the coil spring in the laser beam and stick a piece of paper on the wall 
to intercept the far field diffraction pattern. 

4. Use a straightedge to mark the axes of the diffraction patterns on the paper. 
Mark on the paper the locations of 10 or more closely spaced node (dark) 
lines along one (or more) of the arms of the diffraction “X” pattern. 

5. Measure the distance (L) from the coil spring to the center of the diffraction 
pattern. 

6. Measure the angle 2 between your straightedge lines on the paper that 
indicate the diffraction pattern. If your spring is mounted vertically, the angle 
will be between the top arms of the “X”. 

7. The wire thickness of the coil spring will create a secondary pattern that 
produces large dark nodes along the diffraction “X”. These will obscure some 
of the closely and evenly spaced nodes of the coil pattern.  Take this into 
account and determine the average distance (xavg) between the closely 
spaced nodes in the pattern. This is the same as the distance between 
antinode (maxima) centers in the pattern.  When the distance to the screen is 
large, the diffraction angles are small and the tangent and sine of the 
diffraction angles are nearly the same. Then for m = 1, sin (max)  xavg/L. 

8. Calculate the perpendicular distance between coils in the spring (d), the 
spring coil pitch (P), and the coil radius (R) from your diffraction pattern 
measurements. 

9. Measure the coil pitch and radius with a ruler or calipers and compare to 
your diffraction measurements. 

 
1A. Laser Wavelength =  = ________________ nm 
 
5A. Coil-to-Diffraction-Pattern Distance = L = ___________________ m 
 
6A. Twice the coil pitch angle = 2 = ______________ degrees 
 
7A. Average distance between closely spaced diffraction nodes = xavg = _________ m 
 
8A. Diffraction measurements:  d = _________ mm  P = _________ mm  R = ________ mm 
 
9A. Direct measurements:        P = _________ mm  R = ________ mm 
 
 



 
 
 
Photo 51 DNA Exercise 
1. Assume that Rosalind Franklin used the copper K x-ray line for her photo. 

Then  = 0.154 nm. 
2. Assume the x-ray photo emulsion was placed L = 90 mm from the DNA 

sample. (This assumption is based on the assumption above and the 94 mm 
diameter of the largest circle in the original photo.) 

3. With a straightedge draw lines through the approximate centers of the dark 
spots of the diffraction “X” in Figure 1 and measure the angle 2 at the top 
for the vertical DNA sample. 

4. A lead disc blocked to zero order diffraction spot on the photo. Measure the 
distance (y) along the arms of the “X” to the m = 1 (somewhat obscured), 2, 3, 
and 5 diffraction spots on each of the arms and take an average (yavg) for each 
m value. 

5. Calculate the max values from tan(max) = yavg /L for each m value. 
6. Calculate the d, P, and R values for each m value. 
7. Calculate an average value for P and R of the DNA helix in Photo 51. 
8. Compare your values to Franklin’s values of P = 3.4 nm and R “about” 1 nm. 
9. Evidence for a second identical helix in the DNA molecule is obtained from 

the absence of an m = 4 diffraction spot. As Franklin and Gosling noted, “The 
structural unit probably consists of two co-axial molecules [helices] which 
are not equally spaced along the fibre axis, … if one molecule [helix] is 
displaced from the other by about three-eighths of the fibre-axis period, this 
would account for the absence of the fourth layer line and the weakness of 
the sixth. Thus our general ideas are not inconsistent with the model 
proposed by Watson and Crick in the preceding communication. [Nature 
171, 737-738 (25 April 1953)]”  
 

The Watson and Crick paper cited above includes the DNA 
structure diagram on the left. Take measurements on the 
diagram to show that the second helix is displaced about 3/8 of 
a helix period from the first helix.  
 
A grating with spacing (3/8)d, where d is the grating spacing of 
the original helix, would produce diffraction minima at angles 
given by sin(min) = (n+1/2)/(3/8)d,   where n is an integer. 
As indicated in Equation (2) above, a single helix would give 
diffraction maxima at angles given by sin(max) = m/d,   where 
m is an integer. Find the n value for which the minimum of the 
two helix pattern would coincide with the m = 4 maximum of 
the one helix pattern to produce the absence of the m=4 spots. 

 
 


