Center-Level Portfolio: Johns Hopkins University

The following table, proposed implementation plans by participating teachers, and when available other examples are intended to provide an overall narrative about how and in what ways program participation has influenced teachers in using QuarkNet content and materials in their classrooms (and in-after class events). The value of these qualitative reviews is to expand on the instructional practices measured quantitatively via Teacher Survey responses to specific sets of questions/self-reported by teachers providing narrative examples of implemented or planned instructional practices in teachers' classrooms and in schools. This evaluation approach is consistent with the use of *authentic assessment* to evaluate performance, "teaching for understanding and application rather than for rote recall" (Darling-Hammond & Snyder, 2000, p. 523).

In keeping with Darling-Hammond, Hyler and Gardner (2017), we do not naively expect a single workshop (or event) to have a measurable impact on teachers' knowledge and subsequent classroom implementation. A characteristic of effective professional development is a program of sustained duration, providing "multiple opportunities for teachers to engage in learning around a single set of concepts or practices; that is rigorous and cumulative" (Darling-Hammond, et al., 2017, p. 15). As such, the table summarizes responses by teachers over the course of several program years and likely several QuarkNet programs and/or events.

These responses come from the Teacher Survey (either the full or update version) where each row represents the responses to open-ended questions from the same teacher over time. Also, each row starts with the original responses to the first time a teacher completes his/her full teacher. If a particular box in the table is blank, it likely means that that teacher did not participate in an event for that program year (or, the center may not have had a major event that year). The table provides the essence of these responses; a given response, as presented, may be a direct quote, a paraphrase, or lightly edited; the intent is to convey the overall idea or its essence from that particular teacher.

Because these are responses to open-ended questions, teachers are free (and encouraged) to provide information that he or she thinks most relevant. Each highlighted response is intentionally anonymous to respect the principles of collecting evaluation data (*Guiding Principles for Evaluators*, American Evaluation Association) and to help encourage teachers to respond frankly to these questions. If a reader is familiar with a given center, it may be possible to "reverse engineer" the identify of a particular teacher. We encourage readers to respect this anonymity. At various times, we may have identified a given teacher by name and/or school; when this happens the written approval of that teacher has been obtained. It is also important to note that the full breath of a response by a given teacher may not be fully articulated in this table. For example, responses related to how QuarkNet may have advanced the knowledge of a given teacher or bolstered a collegial network among participants are likely discussed elsewhere in subsequent evaluation reports.

The table is followed by examples of implementation plans, and at times teacher presentations and student presentations when available. The intent of providing these examples is to deepen the narrative as to what and how teachers have planned (and have used) QuarkNet content and materials in their classrooms and in-after class events (e.g., Physics Club). Examples from Annual Center annual reports may be highlighted as well.

Table 1
Self-reported Use of Data Activities Portfolio Activities: Based on Responses from the Full Survey and then Responses from the Update Survey in Subsequent Years **Johns Hopkins University**

Center	Program Year (Year of	Subsequent Program	Subsequent Program Year	Subsequent Program	Subsequent Program
	Full Survey)	Year		Year	Year
Johns	2019	2020	2021	2022	2023
Hopkins University	Rolling with Rutherford. It's the most approachable, with a small amount of prep for students.	I am going to consider new physics principles, such as pulsars and microwave telescopes. Example: Rolling with Rutherford	I will use some of the new cosmology lessons with my Astronomy class. I teach them about the Big Bang, black body radiation and the HR diagram. I will use DAP activities as well as conservation tools. Examples: Signal and noise 1, signal and noise 2, and histograms. Rolling with Rutherford		Rolling with Rutherford is great - we gather data together as a class and analyze the results. QuarkNet has been a wonderful experience and a source of many high-quality lessons and activities. They have benefited my students greatly over the years.
	Top Quark mass	I plan to teach a unit on particle physics using activities from the data portfolio and the cosmic ray detector in my classroom. Examples: Top quark mass, mean lifetime, shuffling the particle deck	I teach particle physics and astrophysics/ cosmology in my Physics course. I will use many of the activities we worked on this week including from the Data Portfolio and new activities developed at JHU. Examples: Top Quark Mass, Hidden Neutrino, Particle Transformations	I teach a unit on quantum physics including particle physics. This includes the standard model and activities from the data activities portfolio. Examples: Top quark mass, Hidden Neutrino, Quark workbench.	Top quark mass, Rolling with Rutherford, Histograms These activities allow students to explore particle physics concepts using physics they are learning in introductory courses.
	Rolling with Rutherford, calculating energy and momentum, quark puzzle activity	Conservation laws, the standard model. Examples: Rolling with Rutherford, conservation of energy and momentum, quark model	I plan to use the blackbody radiation activity and the Hubble's law activity as culminating activities for my introductory physics class. Examples: Cosmic microwaves, Hubble's law	Rolling with Rutherford, calculating energy and momentum, quark puzzle activity	

Table 1 (con't.)

Self-reported Use of Data Activities Portfolio Activities: Based on Responses from the Full Survey and then Responses from the Update Survey in Subsequent Years **Johns Hopkins University**

Center	Program Year	Subsequent	Subsequent Program	Subsequent Program	Subsequent	Subsequent Program
	(Year of Full	Program Year	Year	Year	Program Year	Year
	Survey)					
Johns	2019	2020	2021	2022	2023	2024
Hopkins University	I think Rolling for Rutherford is an easy way for them to understand the experiment through experience and inquiry. I would adapt it to more than just rolling a marble at dice. I would also have them roll a marble at a mystery shape underneath a piece of cardboard and predict what the shape was.	This year, we did more related to online learning because of the circumstances related the pandemic. Having content that can be used virtually, like the QuarkNet e-Labs, will be super useful. Examples: Rolling with Rutherford; The one where you use the detector information.	Next year I will be teaching astronomy in addition to physics, so the cosmology topics and activities that we just happen to focus on this year will be particularly helpful. The new ones I will incorporate are: Mapping the Poles and Particle Transformation.	I was doing Coding Camp 1. The obvious thing from this experience is that I would incorporate is the coding in Python. I will have some introductory coding activities, but ultimately I envision it as a tool that they will be using to help them with labs, homework or projects. I would love to do the muon decays or the leptonic mass coding activities if we get that deep into particle physics.		(1.) Rolling for Rutherford (2.) Dice, Histograms, and Probability (3.) Histogram: The Basics (4.) All the coding notebooks. I would recommend the Data Activities Portfolio and Quarknet to everyone because it is free, and it has changed my content and pedagogical knowledge better than any other PD.
	I have not had the opportunity to really share with other teachers and, unfortunately, in today's test happy society, it is difficult to fit these topics into class and to convince others to fit them into class.		I plan on using the spectral analysis activities we were working on this past week into my ninth-grade physics course. Examples: Mass of the pennies; What Heisenberg knew; CMS masterclass.	When teaching forces, I have a unit on the fundamental forces of nature where I present and the students explore the standard model and the reason why we have Fermilab and the LHC. The first lab is based on the Millikan experiment using histograms and searching for patterns.	Millikan experiment developing histograms. The projects based leaning with an inquiry approach drives my classroom instruction.	Great resources. I always refer to my inquiry approach as "guided inquiry."
	The I2U2 site examples, specifically modern physics puzzle	1. Use of the materials in classroom is great: The subparticle puzzle to start modern physics 2. Masterclass involvement and implementation 3. Standard model discussions, etc. Examples: 1. Quark puzzle/map involving learning color charge, bosons, etc. 2. Penny/coin activity	I have used a significant number of resources involving the QuarkNet workbench, some investigations and more. Overall, my last 10+ years at QuarkNet have really increased my knowledge of certain areas. Examples: The quark workbench, masterclass, J psi (occasionally)	I intend to use my QuarkNet experiences in my own modern physics unit with all physics classes as well as having my Science National Honor Society students to listen to some of the speakers who come to our high school. Examples: The Quark Puzzle, Z mass activities, missing momentum, etc.	Quark puzzle workbench and the mass of the top quark	Workbench. It (DAP) has some really good things for students and teachers

Table 1 (con't.)

Self-reported Use of Data Activities Portfolio Activities: Based on Responses from the Full Survey and then Responses from the Update Survey in Subsequent Years **Johns Hopkins University**

Center	Program Year (Year of Full	Subsequent Program Year	Subsequent	Subsequent	Subsequent
	Survey)		Program Year	Program Year	Program Year
	2020	2021	2022	2023	2024
Johns Hopkins University	Indicated use of DAP activities but no examples provided.	We have discussed the standard model and uncertainty while describing atomic theory. Examples: Mass of Pennies, Dice, Histograms, and Probability and Signal and Noise.			
	I love the dice rolling activities. I always use the dice rolling as an intro to the course because it gives them an intro to data but also problem solving. I plan to use all the lessons we looked at and the race discussions we talked about. Everything was extremely useful this year. I really enjoyed it. Examples: Dice rolling, Rutherford, Cosmic ray muons	I use the data activities portfolio activities pretty often. I also use the coding activities. Examples: Histograms, coin toss, quark workbench.			I use a lot of the coding activities
	Z Boson - It serves as a great conservation of momentum 2-D lab. I can also have students research particle physics before or after.		I have used coding activities to introduce experimental design, resistive forces, and worked with LHC data to show the conservation laws. I will attend World Wide Data Day with my classes and offer Masterclass to my students. I have muon detectors to extend students access to particle physics. Examples: 1. I used my implementation plan for the "Mass of Z boson" and my work at data and coding camp to have students complete the activity in Google Colab. 2. I use "quark workbench" to introduce science practices or the E & M unit.		

Table 1 (con't.)
Self-reported Use of Data Activities Portfolio Activities: Based on Responses from the Full Survey and then Responses from the Update Survey in Subsequent Years **Johns Hopkins University**

Center	Program Year (Year of Full Survey)	Subsequent Program Year	Subsequent Program
			Year
	2021	2022	2023
Johns Hopkins University	I have used the top quark mass activity the most often, not only as an approachable way to teach detector physics but also as an example of 2D momentum conservation. I use the quark workbench fairly often with my AP class as an introduction to particle physics. With my new conceptual class, I plan to use the rolling with Rutherford activity to show the students how we develop a model for the atom. If I can get kids interested this year, I'd like to use several of the muon activities in there (except for signal and noise #1 because it's terrible, which I am allowed to say because I wrote parts of it and am not happy with it)	QuarkNet shows up pretty much anywhere you want to put it. The top quark activity is a nice fit for not only vectors but also conservation of energy and momentum. Muon detectors are a cool way to test a constant velocity model and get a very surprising value for its speed. The use of histograms can help a 9th grade biology or physical science class understand that pennies have discreet mass. Examples: Top Quark, Pennies, Rolling with Rutherford, Dice Histograms Signal and Noise (once I fix that awful one I wrote). We are all partly-finished sculptures. I hope that QuarkNet continues to shape me into what a good science teacher looks like.	Top quark - use it for 2D momemtum conservation in AP physics; penny histogram - use it in intro biology courses for data representation; rolling with rutherford - use it with low level physical science courses for atomic theory and also showed it to the chem teachers; quark workbench - use it sporadically as a low pressure introduction to the rules of the standard model

Note: Each row presents responses from the same individual teacher from a given center. Empty table cells indicate that the teacher did not participate in QuarkNet in that subsequent program year(s). Or, less likely did not complete the Update Survey; or did not answer specific questions about the use of DAP activities in their classrooms.

Table 2 **Johns Hopkins University Summer Workshop July 23-28, 2023** Implementation Plans/Coding Projects

Plan#	Title	Brief Description		Implementation Plan	
1	Spring	Understand how	Mass On A Spring with Jupyt	erLite	
	Mass	masses behave on			
		(vertical) springs as	Topic	Comments	
		well as how to create	Intro to Physics,	Possible use of the Graphing notebooks and/or the Falcon9	
		and apply code to	Kinematics and Projectile	notebook to introduce coding with physics	
		express this behavior.	Motion		
			All Basic Forces, Pulleys,	Possible use of Pulley notebook adjusted with ramp	
		Brief Summary: This	Ramps	activities	
		is a modified Mass on	Energy		
		a Spring JupyterLite	Momentum	Use of QuarkNet workbench activities (Top Quark)	
		notebook. The use of	Rotation and Angular		
		the Lite notebook is	Simple Harmonic Motion	Use of Spring code notebook as presented here	
		for educators whose			
		students are not able to	Spring Notebook Backgrour	nd:	
		access normal Jupyter	This collaboration Spring note	ebook is serving as a summary experience for students that tal	kes place near the end of
		notebooks due to		topic. It is taking place as a mini coding activity for students	
		security/IT issues.		ionships governing the position of a spring mass. Furthermore	e, the coding aspects of the
			activity serve to help the stude	ent navigate the difficult parts of spring motion analysis.	
		The Mass on a Spring			
		has been modified for		to a separate document they will use to answer the questions	
		use in an AP Physics 1		to the reader to decide whether to have this as an individual p	project or a pair
		and AP Physics C	collaboration project.		
		mechanics class. This			
		will serve not as an		ble to determine the spring constant of a basic vertical spring	
		introduction to the		tudent created data. In addition, students will be able to graph	
		topic but instead is	,	different variables, and be able to justify how changing a var	riable affects the positions
		more of a culminating	outcome over time.		
		set of activities to			
		incorporate coding	Spring Notebook Applicatio	n:	
		with physics	Students will be introduced to	the Spring notebook with at least 45 minutes in the period. A	class wide conversation
				nd the goals behind it, along with the importance of being abl	
				ng approach. From there, students will be introduced to the ac	
				ilt-in checks for students to come to the instructor that will ser	
			student progress.	in in checks for students to come to the instructor that will sel	ind as a may to judge
			Statem progress.		

Table 2 (con't.) **Johns Hopkins University Summer Workshop July 23-28, 2023** Implementation Plans/Coding Projects

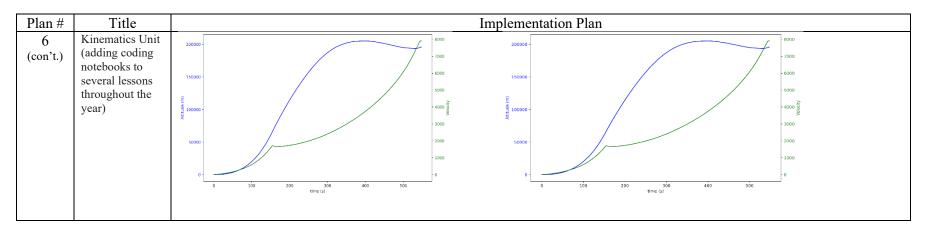
Plan #	Title		
Plan #	Title Position Time Graphs	Brief Description JuptyerLite Notebook Section 1 - Position Time Graphs: Modeling In this activity, you'll use the position function to model different types of motion. Section 2 - Position Time Graphs: Data Table In this activity, you'll use a csv file and pull in data to create your position- time graph. First you'll have a data set to use, then you can create your own Part 2A: Plot data that you collect	Implementation Plans Code in Physics Beginning of year • Use the Intro to Code notebook to get students familiar with the code and the process of using JupyterLite. • Use the Probability notebook to show students histograms and how coding can graph data. Kinematics Unit • Use the Position v time graph notebook to graph student data from inquiry-based activity of constant velocity cars. This is the one I modified to add to my graphing motion lesson. Force Unit • Adapt/Create a notebook to graph F = ma. Maybe have students create one, using the Position v time as a model. Put in data for F and A then scatterplot with line of best fit to get value for m. Scaffold according to Energy Unit • Adapt the Mass of Spring notebook. I use a hands-on lab and a phet simulation. Instead of simulation, I want to give the option of using the code. Or • Adapt the Pendulum notebook. Momentum Unit
		then you can create your own Part 2A: Plot data that	 Energy Unit Adapt the Mass of Spring notebook. I use a hands-on lab and a phet simulation. Instead of simulation, I want to give the option of using the code. Or Adapt the Pendulum notebook.

Table 2 (con't.) **Johns Hopkins University Summer Workshop July 23-28, 2023** Implementation Plans/Coding Projects

Plan #	Title	Brief Description				entation Plan			
3	Periodic Trends (using the periodic tool to predict major trends)	Sequence: Coding basics: (Introduction to Coding Notebook) Half-life Coin Flip Lab: (Probability Notebook) Periodic Table: (Elements and the Periodic Table Notebook)	Rationale: Students can use the periodic table as a tool to predict major trends, allowing for students to predict elemental placement based on elemental properties. Objectives: When you have completed this activity, students can: 1. Construct a model using trend data. 2. Use a model to describe the trends in several physical properties of the elements. 3. Use code to help represent trend data in graphs. 4. Relate these trends to the electron configuration of the elements, and its position on the periodic table. Sequence:						
			Unit	Timeframe	Topic	Notebook			
			Introduction	30 mins in the 1st week	Coding basics	Introduction to Coding			
			Nuclear	1 class period	Half life: Coin flip lab	<u>Probability</u>			
			Nuclear	1 class period	Periodic Trends	Elements and the periodic table			
			Nuclear						

Table 2 (con't.) **Johns Hopkins University Summer Workshop July 23-28, 2023** Implementation Plans/Coding Projects

Plan #	Title	Brief Description	Implementation Plan
4	Constant	Graphing motion of an	Day 1:
	Velocity and	Object Moving at a	• Objectives -
	Coding	Constant Velocity Unit	O Understand and demonstrate knowledge of using a graph to determine an object's velocity
			Calculate slope to find velocity of a non-accelerating object
	(Developed	This unit is designed for	Activities - Cecture on constant velocity.
	by two	classes that are 80	 Have students practice finding velocity for an object moving with constant velocity.
	teachers)	minutes in length.	Discuss graphing position vs. time
			Phet Moving Man Activity
			• <u>Assessments –</u>
			o The Phet Moving Man Activity will be collected and graded as an assessment for the class.
			Day 2:
			 Objectives - Understand and demonstrate knowledge of using a graph to determine an object's velocity
			Collect data that will be useful for determining the velocity of an object
			Activities -
			O Discuss Moving Man Activity from previous day
			o Introduce Physics 500 Lab
			 Give students time to collect data for toy car, marble, person walking backwards Students will record data in a data table
			Students will record data in a data table Ask students how they think we can determine the average velocity of our moving objects from today's measurements. Guide
			students to previous day's discussion on graphing position vs. time.
			Collect student data for tomorrow's activity.
			• <u>Assessments –</u>
			Use end of class discussion as a formative assessment of student understanding.
			Day 3:
			Objectives - Understand the basics of coding
			 Graph data using coding to determine the velocity of a moving object
			• Activities -
			Intro to Coding Activity
			Students use this as an introduction to coding
			 Physics 500 Graphing Activity Students work in pairs as driver and navigator to input data from previous day's data table and create a line of best fit for
			each of the three objects in the lab
			O Discuss velocities that students find. Ask them if they seem reasonable.
			• Assessments –
			As students find their velocities, check student results as a formative assessment of their progress.
			Day 4:
			Objectives - Students will demonstrate their understanding of finding valuatity from a position vs. time graph
			Students will demonstrate their understanding of finding velocity from a position vs. time graph Activities.
			Activities - Conclude Physics 500 Activity
			Give students time to finish lab reports
			Discuss student results from lab reports.
			Ask students which objects traveled the fastest in the lab
			Ask students how they know which objects travel the fastest
			Graphing/velocity assessment
			• <u>Assessments –</u>
			 The graphing/velocity assessment will be a summative assessment of what they learned from the lab activity.


Table 2 (con't.) Johns Hopkins University Summer Workshop July 23-28, 2023 Implementation Plans/Coding Projects

Plan # Title Brief Description Implementation Plan	
Plan # Title Brief Description Implement this activity for sophomore Chemistry students who have already been introduced to balancing chemical reactions in class. Student have already been introduced to the underlying concepts behind why we balance chemical reactions (law of conservation of matter, counting particles using "moles." Notebook after students had with a Phet simulation. By the end of this lesson, students will be able to analyze, edit and use Python code to solve a problem. 2. By the end of this lesson, students will determine their own strategies for balancing chemical reactions. By the end of this lesson, students will be able to analyze, edit and use Python code to solve a problem. Lesson Plan - Balancing Chemical Equations (80 min period) 1. 40 mins - Phet Simulation (Balancing Chemical Equations) 2. 20 mins - Problems Set 2. 15 students will own king proups or individually on the problem set 2. 15 students will propose or individually on the problem set 2. Students may work in groups or individually when they have completed both problems set 2. Students may work in groups or individually when they have completed both problems set 2. Students may work in groups or individually when they have completed both problems set 2. Students may work in groups or individually when they have completed both problems set 3. 20 mins - Python Notebook (Balancing Chemical Equations, with Python notebook as a way to check their	ancing chemical reactions in class. (law of conservation of matter, own strategy to solve a balancing f coding in Python, with a primary blem. quations), during which they will uical reactions, whether it is keeping complete a problem set for balancing m and return to it later th the Phet simulation and the

Table 2 (con't.) **Johns Hopkins University Summer Workshop July 23-28, 2023** Implementation Plans/Coding Projects

Plan #	Title	Implementation Plan				
6	Kinematics Unit (adding coding notebooks to several lessons throughout the year)	Rationale - 1. Coding notebooks are a 2. Coding notebooks have 3. Coding notebooks are a 4. Allows students to work	cross platform tool that can applications in a wide range	nternet access. Absent or remote learners have full access to the content using code.	t.	
		Unit	Timeframe	Coding Notebook Implementation		
		Beginning of School Year (before Kinematics)	First or second day of school	Intro notebook activity - get students acquainted with coding notebooks		
		Kinematics	September - October	After students have conducted lab investigations involving the creation and analysis of graphs from objects moving with constant velocity, constant acceleration, and free fall, a coding notebook lab will be used as a review and extension activity.		
		NSTA Position Statement: PreK-12 teachers of science, school It a drone takes off from reasoning. Exploration: Coding Notebook Active Students work through this Google Doc. This notebook combines Matching Pool Matching Vool Falcon 9 Root Explanation/Evaluation: Students individually mode Students individually mode Students shares their presentation (one slide of	ol and district leaders, and otherce should recognize the co- and where possible, integrate the upwards from Earth's surfact the surface of Earth and acceptivity these notebooks (position grass) as parts of the following notes sition Graphs elocity Graphs elecity Graphs	clocity vs. Time and Acceleration vs. Time graphs for the Falcon 9 rock	Explain your reasoning. for its motion? Explain your asses, evidence, and reasoning on et look the way they do.	

Table 2 (con't.) **Johns Hopkins University Summer Workshop July 23-28, 2023** Implementation Plans/Coding Projects

