
TESTING WIRELESS DATA

TRANSMISSION WITH THE XBEE

WIRELESS TRANSCEIVER

By Thomas Stocklin

Mentor: Raul Armendariz
5/2/25, QCC Physics Department

 Currently, the Physics Department at Queensborough Community College is
engaged in a project to build and test a series of Cosmic Ray Detectors. These
devices take the form of small electronics boxes that house a data acquisition
circuit (or DAQ). This circuit operates in conjunction with a plastic scintillator,
photomultiplier tubes, and an Arduino microcontroller to to detect Muon showers,
calculate their energy, and log the exact time of their appearance.

 In order to generate a timestamp for when these showers occur, the current DAQ
configuration utilizes a pair of Adafruit GPS modules, one housed inside of the box
and one outside. When a coincidence (that is, two signals occurring at the same
time) is detected by the scintillator, a GPS antenna at a nearby window acquires
a NMEA data timestamp from satellites orbiting the earth. This timestamp signal is
then transmitted through a ceiling-mounted wire to the DAQ box and it’s GPS
receiver. This module then sends this data to the Arduino, and the Arduino then
uses this data, alongside a periodic signal produced by the the GPS module, to
calculate a more accurate timestamp for the shower, down to the microsecond.

 As this project continues, the Physics department is looking to expand placement
of these boxes outside of the QCC Physics Lab, installing them at various locations
around campus and even as far as Brookhaven National Laboratory in Suffolk
County. Unfortunately, some of these locations have regulations that do not
allow the use of ceiling-mounted wires. As a result, there has been ongoing
research into substituting the wired connection with a wireless connection and, to
that end, we he have been experimenting with the Xbee 3 Wireless Transceiver.

THE COSMIC RAY DETECTOR

THE XBEE 3 WIRELESS

TRANSCEIVER
• The XBee 3 was developed by Digi International and

is primarily intended for use with the Arduino and
other microcontroller systems. Lightweight and
affordable, the this transceiver boasts an indoor
transmission range of up to 100m, making it ideal for
the limitations of this project.

• When the connected to the GPS module placed at
the window, one XBee, programmed as a wireless
transmitter, collects the NMEA data through a wired
connection to the antenna and then converts that
signal it into it’s own unique frame data structure.
The XBee will then send this data wirelessly to a
second XBee which has been housed in the DAQ
box in lieu of it’s GPS module. This XBee will then
pass this data on to the Arduino for processing.

• Photos of a prototype circuit that utilizes this model
have been included in the next two slides for
convenience. The first circuit simulates the
GPS/XBee transceiver setup as described above,
while the second simulates the receiver XBee and
the Arduino components of the DAQ box.

Current Cosmic Ray Detector DAQ Box

XBee Transmitter Prototype Circuit

XBee Receiver/DAQ Prototype Circuit

XBEE TRANSMITTER PROTOTYPE CIRCUIT

XBEE RECEIVER/DAQ PROTOTYPE CIRCUIT

PPS PULSE

 The heart of the timing calculations that we use for this project is the
Adafruit Ultimate GPS’s PPS (pulse per second) pin. This pin provides a
simple 5V digital signal at a 10% duty cycle, meaning that the signal goes
high for 100ms and low for 900ms in a repeating pattern.

 These high signals, when they are compared to the time that detector
cosmic ray signals are received from the DAQ circuit can be used to
calculate the exact time that the signal was received.

FRAME DATA

 Once the XBees have been properly configured, they will send and receive
signals using a specific data frame structure as determined by the XBee’s API.

 The transmitter XBee will take in data from a wired connection, and then format
that data for transmission by adding unique frames to the signal that allow the
receiver module to recognize the data.

 The individual frames take the form of ascii characters, but for readability our
code will output the data as hexadecimal bytes instead.

7E, 0, A, 83, 0, 0, 17, 0, 1, 0, 4, 0, 4, 5C

Start Byte Frame Length RSSIFrame Type Data Payload Checksum

INITIAL PPS CODE
void loop() {
 getData();
 if (newPPSData == true && receivedChars[0] == startMarker){
 printPPSData();
 newPPSData = false;
 }
 else{
 newPPSData = false;
 }

}

void getData() {
 if(XBee.available() > 0 && newPPSData == false){
 rc = XBee.read();
 if (rc == startMarker){
 recvInProgress = true;
 }
 if (recvInProgress == true){
 receivedChars[ndx] = rc;
 ndx++;
 }
 }
 if (ndx == ppsChars && receivedChars[3] == 131){
 receivedChars[ndx] = '\0';
 recvInProgress = false;
 newPPSData = true;
 ndx = 0;
 }

}
void printPPSData(){
 for (int i = 0; i < ppsChars; i++){
 Serial.print(receivedChars[i], HEX);
 Serial.print(", ");
 }

}

• In order to parse the data, the Arduino will

read the incoming characters from the

receiver XBee one by one. When it receives

the character that corresponds to the start

byte (7E), it will begin to write all of the

incoming characters into an array.

• Once that array has reach the standard size

of a PPS frame, 14 bytes, the program will

then output each individual frame of the

signal to the serial monitor, as shown below.

TIMESTAMPING WITH THE ARDUINO

 The main reason that the Cosmic Ray Detector box needs the PPS signal is that the GPS cannot
provide a timestamp as precise as a microsecond, only a second. As such, these finer
measurements need to be calculated with the Arduino’s internal timers and registers.

 All computers contain an internal crystal oscillator clock that is used for internal timing purposes.
This clock will oscillate with a fixed frequency, and this frequency will determine how many
operations the computer will able to perform in a single second. The Arduino Mega 2560 boasts
a clock speed of 16MHz, meaning that it’s clock will oscillate once every 62.5 nanoseconds, or
16 times a microsecond.

 As such, all iterations of this project have used specific coding functions to keep track of the
number of clock cycles that pass between successive PPS pulses, i.e. that pass once a second.

 Once this wireless iteration of the project is complete, the program will be able to gather
multiple timestamps to determine a.) the time within a second that a PPS pulse is received and
b.) the time within a second that signal from a Muon coincidence is received. The program will
then calculate the number of clock cycles that pass between these two signals in order to get
the exact microseconds that the data is received. This value will then be appended to the GPS
timestamp in order to get the exact time the cosmic ray signal was detected.

TESTING FOR PPS JITTER

 Due to the nature of wireless transmission, the signals we are using for timing will be considerably less
accurate than those gathered from a wireless connection.

 Tests from previous students have determined that the wired connection’s signals would have an average
jitter of ±1.25microseconds , meaning that these signals would, on average, be received by the Arduino 1.25
microsecond faster or slower than expected.

 Previous tests with the XBee wireless connection, on the other hand, would display a maximum jitter of ±62.5
milliseconds. In attempting to write new code for the project, I wanted to experiment with new methods of
parsing the data in order to see if these numbers were truly accurate, and if they could potentially be
improved.

PPS JITTER CODE

TCCR1A = 0; // Sets entire TCCR1A--Timer1 Control Register A--to 0
TCCR1B = bit(CS10); // Turns on the Timer1 clock and sets it to increment every clock cycle
TCCR1C = 0; // Timer 1 Control Register C set to 0
TCNT1 = 0; // Initialize timer/counter 1's value to 0
TIMSK1 = bit(TOIE1); // Timer/Counter1's interrupt mask register; TOIE1 is the timer/Counter1

overflow interrupt enable
Serial.println("Starting up...");
attachInterrupt(digitalPinToInterrupt(PPS_PIN), PPSHandler, RISING);

}
void PPSHandler() {
lastTimerPPS = TCNT1;
overflowsSincePPS = overflows;

}

void loop(){
getData();
if (newPPSData == true && receivedChars[0] == startMarker){
 printData();
 newPPSData = false;
 }
 else{
 newPPSData = false;
 }

}

void getData() {
 if(XBee.available() > 0 && newPPSData == false){
 rc = XBee.read();
 if (rc == startMarker){
 lastTimerXBEE = TCNT1;
 overflowsSinceXBEE = overflows;
 TCNT1 = 0; // Resets Timer1 Count
 overflows = 0;
 recentXBEE = true;
 recvInProgress = true;
 }
 if (recvInProgress == true){
 receivedChars[ndx] = rc;
 ndx++;
 }
 }
 if (ndx == ppsChars && receivedChars[3] == 131){
 receivedChars[ndx] = '\0';
 recvInProgress = false;
 newPPSData = true;
 ndx = 0;
 }

}

• Because the Arduino’s internal registers that are used for the
timers have a maximum size of 64Kb, or 65535 bits, a separate
variable needs to increment every time the timer overflows. The
exact number of clock cycles is then calculated by multiplying
the number of overflows by 65535 and then adding the remaining
contents of the timer register.

• In order to determine the jitter of the wireless signal, code was
written that would gather two different timer values, one when
the PPS pin on the GPS module goes high, and another when the
XBee on the receiver end gets the start byte (7E) of the PPS
transmission. The signal from the PPS pin was gathered by running
a wire directly from the PPS pin to the Arduino Mega, as shown
below, and interrupting the program to gather the timer values
when this PPS pin goes high.

PPS JITTER CODE
void printData(){
 if (recentXBEE) {
 noInterrupts();
 uint32_t overflowsTempPPS = overflowsSincePPS;
 uint32_t lastTimerTempPPS = lastTimerPPS;
 overflowsTempXBEE[ndx1] = overflowsSinceXBEE;
 lastTimerTempXBEE[ndx1] = lastTimerXBEE;
 uint32_t ppsCycles = overflowsTempPPS << 16 | lastTimerTempPPS;
 uint32_t xbeeCycles = (overflowsTempXBEE[0] + overflowsTempXBEE[1]) << 16 |

(lastTimerTempXBEE[0] + lastTimerTempXBEE[1]);
 uint32_t transmissionGap = xbeeCycles - ppsCycles;
 double transmissionGapMillis = transmissionGap * (62.5 * pow(10, -6));
 interrupts();

 if(receivedChars[8] == 1 && receivedChars [12] == 0x4){
 Serial.print(ppsCycles); // Equivalent to overflowsTemp * 2^16 + lastTimerTemp
 Serial.print("\t");
 Serial.print(overflowsTempXBEE[0]);
 Serial.print("\t");
 Serial.print(overflowsTempXBEE[1]);
 Serial.print("\t");
 Serial.print(lastTimerTempXBEE[0]);
 Serial.print("\t");
 Serial.print(lastTimerTempXBEE[1]);
 Serial.print("\t");
 Serial.print(xbeeCycles); // Equivalent to overflowsTemp * 2^16 + lastTimerTemp
 Serial.print("\t");
 Serial.print(transmissionGap);
 Serial.print("\t");
 Serial.println(transmissionGapMillis);
 }

 ndx1++;
 if (ndx1 == 2){
 ndx1 = 0;
 for(int i = 0; i < 2; i++){
 overflowsTempXBEE[i] = 0;
 lastTimerTempXBEE[i] = 0;
 }
 }
 recentXBEE = false;
 }

}

• Because the XBee can only gather the PPS data by change detection
(high to low or low to high), there is currently no way to prevent the XBee
from transmitting an extra signal when the PPS pin goes low. This means
that for every one second period of the PPS pin’s cycle, two wireless
signals will be transmitted to the XBee; and two timer reading will need to
be gathered and then added together. The timer counters will then be
reset once the high signal from the XBee is received, and the data will
then be processed and displayed.

• Because, as noted, wireless transmissions travel slower, the high
transmission will be received slightly after the PPS pin on goes high. As a
result, if you subtract the sum of the two XBee timer readings from the PPS
timer reading will produce the exact number of clock cycles between

the PPS pin on the GPS going high and the XBee receiving the correct
PPS wireless signal. The result of these calculations have been displayed
below, with the two numbers on the right representing the number of
clock cycles and it’s corresponding value in milliseconds respectively.

CALCULATING JITTER

 In order to find a suitable average of the clock cycle readings, along with an average jitter,
clock cycle data was collected across five consecutive five minute tests where the two XBees
were separated by a distance of 10m (with a suitable length of wire running from the GPS
module on one end to the Arduino on the other). With each of these tests, approximately 300
clock cycle reading were taken, each one second long, and the data was processed using the
formula below to get an average jitter for the entire test.

RESULTS

 The results of the five tests show that on average, a delay of 8.5ms can be expected between the
physical (wired) PPS pulse and the reception of the pulse by the XBee.

 Additionally, an average jitter of only 930 microseconds was observed between each of the individual
XBee wireless high signals.

 Tests at ten meters lead to a handful of erroneous readings with each test due to bugs with the code,
and these needed to adjusted in the final results. These errors were much more pronounced in the
100m tests, so further work needs to be done to allow the circuit to function at longer range.

-8.00

-6.00

-4.00

-2.00

0.00

2.00

4.00

6.00

0 50 100 150 200 250 300 350

J
it
te

r
fo

r
In

d
iv

id
u

a
l R

e
a

d
in

g
 (

Te
st

R
e

su
lt
s

-
Te

st
 A

v
e

ra
g

e
)

Consecutive Reading in Sequence

Average Jitter (10m test 1)

0

2

4

6

8

10

12

0 50 100 150 200 250 300 350

A
v
e

ra
g

e
 D

e
la

y
 f

o
r

In
d

iv
id

u
a

l R
e

a
d

in
g

(m
s)

Consecutive Reading in Sequence

Average Delay in Milliseconds (10m test 1)

FUTURE GOALS: GETTING THE NMEA TIMESTAMP

Acknowledgements:
David Buitrago, Physics, York College

Nikolai Baca, Physics, Queensborough Community College

Raul Armendariz Ph.D., Physics, Queensborough

Community College

	Slide 1: Testing Wireless Data Transmission with the XBee Wireless Transceiver
	Slide 2: The Cosmic Ray Detector
	Slide 3: The XBee 3 Wireless Transceiver
	Slide 4
	Slide 5
	Slide 6
	Slide 7: XBee Transmitter Prototype Circuit
	Slide 8: XBee Receiver/DAQ Prototype Circuit
	Slide 9: PPS Pulse
	Slide 10: Frame Data
	Slide 11: Initial PPS Code
	Slide 12: Timestamping with the Arduino
	Slide 13: Testing for PPS Jitter
	Slide 14: PPS Jitter Code
	Slide 15: PPS Jitter Code
	Slide 16: Calculating Jitter
	Slide 17: Results
	Slide 18: Future Goals: Getting the NMEA Timestamp
	Slide 19

