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So | asked ChatGPT to make a presentation about Al...

Sure! Here's a simple slide on artificial intelligence:

Artificial Intelligence

e Alis changing

the world!

e Machine \g}, r
learning is a Q.4 .
type of Al.

e Robots are
cool
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Machine Learning Basics

o Subfield of Al focused on teaching
models to make predictions based
on generalizations observed In
data

Supervised: Data is labeled (used for classifications and
regressions)

Unsupervised: Data is not labeled or partially labeled
(used for grouping and clustering)

* Most common method for applying
ML technigques Is with neural
networks
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THIS 1S YOUR MACHINE LEARNING SYSTETM?

P
T

YUP! YOU POUR THE DATA INTO THIS BIG

LE OF LINEAR ALGEBRA, THEN COLLECT
E ANSLIERS ON THE OTHER SIDE.

|
WHAT IF TH

\

£ ANSLERS ARE LJRONG? )

JUAST STIR THE PILE UNTIL
THEY START LOOKING RIGHT.




Universal Approximation Theorem

e A neural network with
nonlinear activation
can approximate any
continuous function
of arbitrary
complexity™

““Assuming the network Is
given sufficient neurons
and the training dataset is
representative of the
domain of the function
being modeled.

Assuming the network is given sufficient
neurons and the training dataset is
representative of the domain of the function

being modeled.
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Universal Approximation Example

Neural Network Approximating sin(x)
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Universal Approximation Example

Neural Network Approximating sin(x)

=== True sin(x)
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Universal Approximation Example
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Neural Network Approximating sin(x)
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Universal Approximation Example

Neural Network Approximating sin(x)
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Universal Approximation Example

Neural Network Approximating sin(x)
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What iIs a Neural Net?

e Set of layers of nodes (or

neurons) connected

to each node of the previous and subseqguent

layers

Qutputs of previous layer passed as inputs to next layer

“Training” Is the process that finds the optimal set of weights

connected each layer

The input to the node is A(x - W -

- b) where A is some non-linear

activation function

Output of last layer is the probabilities for each possible class
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How to train your neural network

* [raining: Repeatedly inputting your training
dataset through the network and adjusting
welghts to minimize a "Loss Function”

we are here with random value g g

- Loss function is a measure of “how incorrect” the network is.
Compares model outputs to true labels

- Updates weights in direction that maximally decreases loss
function
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hat’'s a Transformer???
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Transformers: Secret Sauce to Modern Al

Based on encoder-decoder architecture from
foundational “Attention is All You Need” paper
by Vaswani et al.

e [arge Language Model (LLM) transtormers
consist of:

Embedding
Stacks of attention + feedforward NN layers

Encoder-decoder structure, encoder to understand input, decoder
{0 generate output
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TO PROVE YOURE A HUMAN
CLICK ON ALL THE PHOTOS
THAT SHOW PLACES YOU

WOULD RUN FOR SHELTER
DURING A ROBOT UPRISING.

l@
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Transformer: Example Sentence

“The quick brown fox jumps over the lazy dog”

Embedding: Map each word in the sentence to a numerical vector. Also
encodes position of each word

Attention: “Which words in this sentence are most important for
understanding jump?” Maybe jump pays attention to (attends):

“fox” - who did the jumping
“over” - modifies the verb jump
“dog” - what was jumped

Multi-head attention: learn different relationships, one head learns
subject-verb relationships (fox-jump) and another learns adjective-noun
relationships(quick-fox, lazy-dog), etc

Encoder: context learned from attention heads preserved in vector-
representation of word

Decoder output: encoder and previous decoder outputs used as input -
attends to every word in input sentence and response generated so far
(superior performance on long sequences compared to earlier natural

language processing models such as recurrent neural nets)
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[SEP]
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https://blog.gopenai.com/day-2-in-depth-study-of-transformer-architecture-748b24b7129f

VIL revolution in HEP

e ML technigues prevalent in several areas of
HEP:
SO

Anomaly detection h1p://atlos.ch

Simulation & background modeling

Tracking
Triggering
Jet classification

More!!l

Our focus today
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Jets in HEP

e Spray of collimated particles originating from
the hadronization of particles produced in a
high energy collision

- Show up as cluster of energy and tracks in a narrow cone of the Ped dots are

detector “hits” in
detector layers.
- Jets from different origins have characteristic substructures Ma&\g Qlifargfke

e J[racks marking the trajectory are left when
charged particles traverse layers of inner
detector

R - Serve as inputs for ML jet classifiers
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Why tag jets”?

e Hadron Colliders - messy environment with many jets in the final
state

- Jets w/ light flavour hadrons (u/d/s quarks+gluons) >> jets w/ heavy flavour hadrons (c/b quarks)

o Useful to select interesting events, such as H — bb/cc

2z
3% YY  Zy
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B-jet Signatures

e B-hadrons are relatively long-lived (7 ~ 0.5 mm)

e B-hadron decays are characterized by:

- Large track impact parameters (tracks are displaced from primary vertex)

- Displaced secondary vertices w/ high mass

- Displaced tertiary vertices from B — C decays
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https://indico.cern.ch/event/1232499/attachments/2602341/4494127/2023-03-01_GN1_Seminar.pdf

| LM’s to Graph Neural Nets

e Seqguences are natural representations of sentences -> graphs are natural
representations of tracks in a jet

e |n ATLAS: Implement transtormer style graph neural nets to:

Classify Jets (graph classification)
Classify origin of tracks (node classification)

Predict tracks originating from shared vertex (link prediction)
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DL1r = GN1

e GN1 removes the need for low-
level taggers; “All-in-One Tagger”

e Uses a single model for jet
classification

Associated
tracks

e |mplements track origin anad
vertexing auxiliary tasks

Manually
optimised
algorithms

Trained
algorithms

S. Van Stroud
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https://indico.cern.ch/event/1232499/attachments/2602341/4494127/2023-03-01_GN1_Seminar.pdf

C-jet rejection
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GN2 Architecture
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Limitations of ML

o ML outputs are rarely “explainable”
DESPITE OUR GREAT RESEARCH

RESULTS, SOME HAVE QUESTIONED - Black-box predictions only useful to certain extent
OUR AI-BASED METHODOLOGY.

BUT WE TRAINED A CLASSIFIER e (Overconfident
ON A COLLECTION OF GOOD AND

BAD METHODOLOGY SECTIONS, - Models are rarely conservative in predictions
AND IT SAYS OURS 1S FINE.

a—

- Algorithms that offer high performance and accuracy actually encourage
overconfidence

e Highly domain specific

- Easily inherits biases from training data &

- Falls to generalize to outlying data

BECAUSEYOU BUILT AND TRAINED ME.
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Conclusions

* Modern LLM’s are very powerful, but...

- Expensive to train/use

- Already trained on (basically) entire internet, Al data
consumption may outpace human generation

- Overconfidence

e ML used in HEP for decades

- Becoming a more integral part of analysis

- Use in data-taking set to expand

Connor Waits- University of Oklahoma
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