
AREF

GND

13

12

11

10

9

8

7

6

5

4

3

2

1

0

14

15

16

17

18

19

20

21

L

T
XR
X

O
N

TX0

RX0

TX1

RX1

TX2

RX2

TX3

RX3

SDA

SCL

2
2

2
4

2
6

2
8

3
0

3
2

3
4

3
6

3
8

4
0

4
2

4
4

4
6

4
8

5
0

5
2

2
3

2
5

2
7

2
9

3
1

3
3

3
5

3
7

3
9

4
1

4
3

4
5

4
7

4
9

5
1

5
3

5
V

G
N
D

A0

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12

A13

A14

A15

IOREF

RESET

3V3

5V

GND

GND

VIN

M
E
G
A

2
5
6
0

A
N
A
L
O
G

I
N

P
O
W
E
R

DIGITAL

P
W
M

C
O
M
M
U
N
I
C
A
T
I
O
N

Introduction
Cosmic Ray Data Acquisition with Arduino-Based Systems

What Are Cosmic Rays?

Sources of Cosmic Rays

| 2

Cosmic rays are high-energy particles from outer space that travel through the universe and strike the Earth's atmosphere. Despite the name, they
are not rays (like light rays), but rather subatomic particles — mostly protons.

Figure 1.01 – Solar Flares Figure 1.02 – Supernovae Figure 1.03 – Black Holes

Figure 1.04 – Quasars Figure 1.05 – Pulsars

When cosmic ray protons collide with molecules in Earth’s atmosphere, they initiate extensive
air showers that generate a cascade of secondary particles. Many of these secondary particles
rapidly decay into muons and neutrinos.

Because muons travel quickly and interact only weakly with matter, they can penetrate all the
way to the ground, where they are the primary particles detected by our cosmic ray detectors.

In general, the higher the energy of the incoming cosmic ray, the larger the air shower and the
greater the number of secondary particles it produces.

Cosmic Ray Showers

| 3

Muons from Cosmic Rays

Cosmic Ray
Detectors

Atmospheric Interactions

Figure 1.07 – Cosmic Ray Detector
Figure 1.06 – Cosmic Ray Shower

When a muon passes through the scintillation
material in the detector, it interacts with the atoms
in the material, transferring energy to them.

The scintillator material then releases this excess
energy in the form of photons (light).

The amount of light emitted is proportional to the
energy deposited by the muon as it passes through
the material.

The light guides capture this light and internally
reflects it with minimal loss, funneling it efficiently
towards the photomultiplier tubes.

Muon-Induced Photons

| 4

Photon emission process

Figure 1.08 – Photon Emission Process

The photomultiplier tubes (PMTs), which receive
the photons generated by the scintillator material,
are responsible for converting it into a measurable
electric current.

When a photon reaches the photocathode of the
PMT, the photocathode ejects an electron through
the photoelectric effect. This electron is then
accelerated and directed toward a series of
electrodes called dynodes inside the PMT. At each
dynode, the electron triggers the release of
additional electrons upon impact, creating an
amplified cascade that greatly multiplies the
original signal.

The resulting large pulse of electrons is collected at
the anode, which serves as the final electrode in
the chain. The anode gathers the multiplied
electrons and converts them into a measurable
electrical current which is then passed to a signal
processing module.

Photomultiplier Tubes (PMTs)

| 5

Photon to Electron Conversion & Amplification

Muon

Photon

Electrons Muon Interaction with Scintillator

Scintillator Photomultiplier Tube

Photocathode

Dynode
Electrical

Connections

Anode

Figure 1.10 – Photomultiplier Tube

However, a single detector cannot reliably confirm a
true particle interaction, as random noise or
background radiation may produce false triggers.

To address this, we use two detectors stacked atop
one another. Each detector then sends their signal,
through the PMT to our signal processing module.

This setup enables our signal processing module to
check for signals that arrive from both detectors
within a narrow time frame and reject false signals,
the ones only appearing on one detector, since
random noise usually affects only one detector at a
time.

Cosmic Ray Detector Setup

| 6

Coincidence Detection

Detectors

Figure 1.09 – Two Stacked Cosmic Ray Detectors

Amplifies the weak output signal generated by the
photomultiplier tube (PMT).

Amplification

Pulse Shaping
The voltage pulses from the PMT are extremely
brief—only about 20 to 40 nanoseconds wide. To
accurately measure their peak voltage, each pulse
is stretched using an RC integrator circuit with an
operational amplifier (op-amp). This makes the
pulse easier to analyze and measure.

Signal Processing Module

| 7

Figure 1.11 – Signal Processing Module

Noise Filtering
The signal processing module compares the signals
from the two stacked detectors. Because valid
cosmic ray events (like passing muons) trigger both
detectors at nearly the same time, the system uses
this coincidence to filter out random noise or
background radiation.

After passing through the Signal Processing
Module, the signal is sent to the Arduino
ATmega2560. When a muon passes through the
detector the microcontroller records the exact
moment the signal arrives as a timestamp.

This allows us to track when each event occurred,
measure time intervals between them, and analyze
event patterns over time.

Timestamping

Voltage Measurements
We also use the ATmega2560 to measure the
voltage signal generated when a muon passes
through our detector. Each time a muon interacts
with the scintillator, it produces a flash of light
that’s converted into a small voltage pulse by the
photomultiplier tube.

The microcontroller reads this voltage, allowing us
to capture and analyze the amount of energy
deposited by the muon.

Arduino ATMega 2560

| 8

Figure 1.12 – Arduino ATMega 2560 Microcontroller

To convert an analog signal, the ADC performs a series of checks to determine
whether the signal is higher or lower than reference voltages, building a digital
(binary) value that approximates the original signal. The precision of this
approximation depends on the ADC’s bit resolution; on the ATmega2560, the ADC
provides 10 bits of resolution.

Signal Types

Analog to Digital Converter (ADC)

| 9

Analog signals vary smoothly and continuously
over time, taking on any voltage within a given
range.

Digital signals use only two states, representing 0
or 1, which makes them easier for digital systems
to process.

Analog Signal

Analog Signal

8-Bit Sampling

16-Bit Sampling

Conversion

Figure 1.14 – Digital Signal

Figure 1.13 – Analog Signal

Figure 1.15 – Analog to Digital Conversion Process

After passing through the Signal Processing
Module, the signal is sent to the Arduino
ATmega2560. When a muon passes through the
detector the microcontroller records the exact
moment the signal arrives as a timestamp.

This allows us to track when each event occurred,
measure time intervals between them, and analyze
event patterns over time.

Timestamping

Raspberry Pi

| 10

Figure 1.13 – Arduino ATMega 2560 Microcontroller

Intercollegiate Detection Array

Applications

| 11

Shower Size & Density

The size and density of detected muon showers serve as
indirect indicators of the primary cosmic ray’s energy. A wider,
denser shower suggests a higher-energy origin, possibly
indicating ultra-high-energy cosmic rays (UHECRs).

In collaboration with colleges, we plan to create a multi-point
detection array capable of capturing wide-area cosmic ray
events.

Estimating Primary Cosmic Ray
Energy

By comparing muon detections across multiple detectors in
different boroughs, we can estimate the lateral spread and
intensity of an air shower.

UHECRs have energies exceeding anything we can generate in particle
accelerators like the large hadron collider. Studying them allows us to
probe fundamental physics at extreme energies, possibly revealing new
particles or interactions.

Figure 1.16 – Cosmic Ray Shower

Module I
Hardware Overview

HardwareSoftware

What is Arduino?

Data Exchange

| 13

Arduino is an open-source electronics platform that combines hardware and software to create interactive projects. It utilizes a variety of
microcontroller-based boards, which can be programmed using the Arduino IDE (Integrated Development Environment), a software application
where you write the code that sends the Arduino microcontroller instructions.

Instructions

Information

Figure 2.01 – Communication Diagram

Components & Accessories

Hardware List:

| 14

Your first step should be to familiarize yourself with the hardware you’ll be using. Understanding the purpose and function of each component is
important for resolving troubleshooting issues and designing effective circuits. It also helps prevent damage by ensuring safe connections and
simplifies the integration of components into your projects.

o Raspberry Pi

o Arduino ATMega 2560

o Adafruit LED Backpack Counter

o Adafruit Ultimate GPS Breakout V3

o Adafruit BMP280 Pressure &
Temperature Sensor

o XBee3 Radio Module

o XBee Dongle

o Jumper Wires

o Breadboard

Figure 2.02 – Experiment Hardware

Arduino ATMega2560 Microcontroller

Purpose

| 15

The Arduino ATMega 2560 is a type of microcontroller, which is a small computer on a single circuit board. It is used to control various electronic
devices and projects. Imagine it as the "brain" that tells other parts what to do.

Inputs:
It can read digital or analog signals (via an
onboard ADC) from external equipment,
GPS modules, sensors, etc.

Processing:
The microcontroller runs your C++ code.
That code can do calculations, filter
signals, apply logic decisions, and
manage timing — for example, counting
pulses or interpreting sensor
measurements.

Outputs:
It can also control things like LEDs or
motors by sending signals to them.

Refer to the appendix for a full pin breakdown.

Figure 2.03 – Arduino ATMega 2560 Microcontroller

Adafruit BMP280 Pressure & Temperature Sensor

Purpose

| 16

The BMP280 is a combined barometric pressure and temperature sensor designed for precise environmental measurements. It can measure
atmospheric pressure and temperature while also estimating altitude by calculating changes in air pressure. Communicating over I²C or SPI, the
BMP280 integrates easily with microcontrollers like Arduino.

o Combines barometric pressure and
temperature sensing in a compact
package

o Measures atmospheric pressure with
high precision (±1 hPa)

o Measures temperature with accuracy
of around ±1 °C

Refer to the appendix for a full pin breakdown.

Figure 2.04 – Adafruit BMP280 Pressure & Temperature Sensor

Adafruit LED Backpack Counter

Purpose

| 17

The Adafruit LED Backpack Counter is a display module. It can show numbers, symbols, or simple characters and is commonly used for counters,
timers, or status indicators. The LED Backpack Counter offers a simple way to add visual feedback to your circuit designs.

o I²C interface for easy wiring with
Arduino or other microcontrollers

o Integrated LED driver chip simplifies
control of 7-segment or matrix displays

o Supported by Adafruit’s open-source
libraries for fast setup and coding

Refer to the appendix for a full pin breakdown.

Figure 2.05 – Adafruit LED Backpack Counter

GPS Tracking

Adafruit Ultimate GPS Breakout V3

Purpose

| 18

The Adafruit GPS module is a compact and highly accurate positioning device that uses signals from global satellite networks to determine location,
speed, and time data. Provides precise time data and includes features like built-in antenna support for reliable operation even in challenging
environments.

o Provides precise location information,
including latitude, longitude, and altitude.

o Outputs data in standard NMEA format for
easy integration with microcontrollers like
Arduino.

o Offers accurate time data based on GPS
signals, including UTC (Coordinated
Universal Time).

Refer to the appendix for a full pin breakdown.

Figure 2.06 – Adafruit Ultimate GPS Breakout V3

XBee Dongle

Purpose

| 19

The XBee dongle is a simple plug-and-play USB device that allows a computer to communicate with XBee radio modules. It acts as a bridge between
your PC and an XBee network, enabling configuration, data monitoring, and testing. With built-in drivers and compatibility with tools like XCTU, it
offers a way to integrate wireless communication without complicated wiring.

o USB plug-and-play interface for simple PC-
to-XBee communication

o Works seamlessly with XCTU software for
configuration and testing

o Allows wireless programming, debugging,
and data monitoring of XBee modules

Refer to the appendix for a full pin breakdown.

Figure 2.07 – XBee Dongle

Wireless Communication

XBee3 Radio Module

Purpose

| 20

The XBee3 is a powerful, compact wireless communication module. It offers secure, low-power networking with flexible configuration options,
allowing devices to communicate over short to medium distances. Paired with tools like XCTU for configuration and diagnostics, the XBee3 makes it
easy to integrate wireless connectivity with minimal effort.

o Built-in MicroPython interpreter for simple
edge processing without extra
microcontrollers

o Offers reliable wireless data transfer

o Easily configured and diagnosed using Digi
XCTU software

o Standard serial interface for easy Arduino
integration

Refer to the appendix for a full pin breakdown.

Figure 2.08 – XBee 3 Radio Module

Breadboard & Jumper Wires

Purpose

| 21

Breadboards provide a platform for rapidly prototyping electronic circuits. Their internal metal clips connect rows of holes, allowing easy insertion
and rearrangement of components without permanent connections. Paired with male-to-male or female-to-male jumper wires, breadboards enable
flexible routing of signals and power, supporting experimentation with sensors and microcontrollers.

o Internal metal clips connect the rows of
holes horizontally (a-e) & (f-j) but not
across the middle divider

o Internal metal clips connect the rows
along the positive and negative rails at the
edge of the breadboard vertically

o Jumper wires are used to access the pins
inserted into the breadboard, transmitting
the signals from their respective
connections

+ -+ -

a b c d e f g h i j

1

5

10

15

1

5

10

15

Figure 2.09 – Breadboard Internal Metal Clip Connections

Module II
Software Overview

Arduino IDE

XCTU

PuTTY

Required Software

Application List:

| 23

This experiment relies on a suite of essential software tools to enable effective programming, configuration, and communication. Together,
these tools form a cohesive environment that supports efficient development, robust configuration, and reliable data exchange across the
entire experimental workflow.

z

o Arduino Integrated Development
Environment

o Digi XCTU Configuration & Test Utility
Software

o Microsoft Excel

o PuTTY

Figure 3.01 – Software Suite

Microsoft Excel

Arduino IDE

Features:

| 24

The Arduino Integrated Development Environment (IDE) is a free software application used to develop programs for Arduino boards. It
provides a code editor, compiler, and a serial monitor to observe data from the board.

o Supports writing, compiling, and
uploading C/C++ code to Arduino
boards

o Includes a built-in serial monitor for
real-time data observation

o Simplifies managing libraries and third-
party board packages

o Provides an intuitive editor with syntax
highlighting and basic error checking

Figure 3.02 – Arduino IDE Interface

Digi XCTU

Features:

| 25

XCTU is a configuration and testing utility developed by Digi for managing XBee wireless modules. It provides a user-friendly interface to
configure device parameters, update firmware, and establish communication settings. XCTU also includes tools for network mapping, range
testing, and frame analysis, making it easier to diagnose connection issues and validate wireless performance.

o Supports firmware updates and
parameter adjustments

o Includes network mapping and
range-testing tools

o Offers frame analysis for detailed
packet inspection

o Simplifies diagnosing and resolving
wireless communication issues

Figure 3.03 – XCTU Interface

Putty

Features:

| 26

PuTTY is a lightweight, open-source terminal emulator commonly used for serial and network communications. PuTTY can capture and log
output from the Arduino IDE or other serial sources to a text file, providing a simple and effective way to archive test data for later analysis.

o Provides a simple interface for quickly
testing bidirectional serial
communication with your board.

o Supports multiple protocols but for
Arduino, you’ll mainly use the serial
(COM port) mode.

o Handy for saving serial data to a text
file for later analysis or debugging.

Figure 3.04 – PuTTY Interface

Microsoft Excel

Features:

| 27

We use Excel to analyze our data because it makes it easy to organize, visualize, and interpret the information we collect. After recording
muon detection events, we import the raw data directly from PuTTY into Excel. From there we can plot trends and identify patterns in the
timing of events.

o Easy Data Import:

o Graphing Tools:

o Text Manipulation & Math Formulas:

Figure 3.05 – Microsoft Excel Interface

Enables users to process text and
perform mathematical calculations
directly within cells for efficient data
analysis and formatting.

Create scatter plots, line graphs, and
histograms to visualize event patterns.

Copy raw output from PuTTY directly
into Excel for quick access and
organization.

Module III
Arduino IDE Setup

Arduino to PC USB Connection

| 29

Connecting the USB Type-B cable between your computer and the Arduino board establishes a bidirectional communication link, allowing your
computer to upload code to the microcontroller while also enabling the Arduino to send data back to the computer.

Figure 4.01 – Arduino-PC USB Connection

Connect the USB Type-B cable to your
computer and the Arduino board.

| 30

Launch Program

The code you write in the Arduino IDE is called a sketch, and
the Arduino compiler within the program handles all the setup
to convert it into machine language for the microcontroller. It
utilizes a simplified subset of C++ with a few custom libraries
simplifying C++ to be more accessible for prototyping and
hardware interaction.

Locate the Arduino IDE icon on your desktop and
launch the program

Sketches

| 31

Essential Libraries

Arduino libraries are packaged collections of functions and
drivers that extend the Arduino’s capabilities to work with
specific hardware or features.

1) Click on the Libraries icon in the left-hand panel
of the Arduino IDE.

2) Use the search bar to find and install the latest
versions of the following libraries:

o Adafruit BMP280 Library
o Adafruit GPS Library
o Adafruit LED Backpack
o TimerOne

What are Libraries?

Be sure to select Install All when prompted about dependencies.

| 32

Board Selection

Selecting the correct board in the Arduino IDE is crucial before
uploading your sketch. The board selection tells the IDE which
microcontroller architecture, clock settings, and memory map
to target during compilation and uploading.

1) Navigate to the toolbar and select Tools.

2) Go to Boards > Arduino AVR Boards

3) Select the model of the board you are using. In
this case, it is the Arduino Mega or Mega 2560.

AVR Boards

| 33

Port Selection

Choosing the correct port under ensures the IDE knows where
to send uploads and where to listen for serial data. If you pick
the wrong port, uploads will fail, or you won’t see any serial
monitor output.

1) Navigate to the toolbar and select Tools.

2) Go to Ports.

3) Select the COM port that shows the model of
your microcontroller alongside it.

COM Ports

| 34

Serial Monitor Interface

The baud rate defines how fast data is sent between your
Arduino and the Serial Monitor.

Baud Rate

If the baud rate in the Serial Monitor does not match the speed set
in your code, you will see garbled or unreadable text.

i.e., Serial.begin(115200)

| 35

Serial Monitor Interface

Adds or removes computer-generated time-stamps on
each line of serial output.

Erases the current serial display, removing all data for a
clean debugging view.

The IDE autoscroll feature automatically keeps the latest
serial or console output in view as new data arrives.

Toggle Autoscroll

Toggle Timestamps

Clear Output

Module IV
Adafruit BMP280 Temperature & Pressure Sensor

BMP280 Operational Test

| 37

Follow the instructions provided to complete an operational test, verifying that the BMP280 sensor is functioning correctly, returning valid
environmental data, and properly integrated into the system. Successful completion of this test confirms the sensor is ready for use in your
application.

Figure 5.01 – BMP280 Pressure & Sensor Module

| 38

Launch Program

The code you write in the Arduino IDE is called a sketch, and
the Arduino compiler within the program handles all the setup
to convert it into machine language for the microcontroller. It
utilizes a simplified subset of C++ with a few custom libraries
simplifying C++ to be more accessible for prototyping and
hardware interaction.

Locate the Arduino IDE icon on your desktop and
launch the program.

Sketches

| 39

Essential Libraries

Arduino libraries are packaged collections of functions and
drivers that extend the Arduino’s capabilities to work with
specific hardware or features.

1) Click on the Libraries icon in the left-hand panel
of the Arduino IDE.

2) Use the search bar to find and install the latest
versions of the following library:

o Adafruit BMP280 Library

What are Libraries?

Be sure to select Install All when prompted about dependencies.

Arduino to PC USB Connection

| 40

Connecting the USB Type-B cable between your computer and the Arduino board establishes a bidirectional communication link, allowing your
computer to upload code to the microcontroller while also enabling the Arduino to send data back to the computer.

Figure 5.02 – Arduino-PC USB Connection

Connect the USB Type-B cable to your
computer and the Arduino board.

BMP280 Wiring Setup

| 41

The BMP280 uses SPI (Serial Peripheral Interface) to communicate with the Arduino ATMega 2560. SPI is a fast, synchronous protocol ideal for high-
speed sensor data transfer. It allows the microcontroller to exchange data with the sensor using a master-slave architecture over just four data lines.

Connections

3.3V

GND

Pin 52

Pin 50

Pin 51

Pin 53

VIN

GND

SCK

SDO

SDI

CS

Figure 5.03 – Arduino ATMega2560 - BMP280 Sensor Wiring Setup

Attach the BMP280 sensor to the
breadboard using the jumper wires to
make the following connections.

Arduino BMP280

BMP280 Wiring Setup

| 42

This photo shows the BMP280 connected via SPI to the Arduino Mega 2560. Verify that the sensor is powered with 3.3V and grounded properly. Take
a moment to check that all four SPI lines—MISO, MOSI, SCK, and CS—are cleanly connected and not loose, as even small wiring issues can lead to
failed communication or corrupted sensor readings.

Connections

Arduino BMP280

3.3V

GND

Pin 52

Pin 50

Pin 51

Pin 53

VIN

GND

SCK

SDO

SDI

CS

Figure 5.04 – Arduino-BMP280 Sensor Wiring Setup

BMP280 Test Sketch

Code Block

| 43

Read through the following code
and try understanding the
instructions being given to the
Arduino.

Once done, paste the following
Arduino sketch into the IDE and
upload it to verify that the module
is functional.

#include <SPI.h>
#include <Adafruit_BMP280.h>

#define BMP_CS 53
constexpr float seaLevelPressure_hPa = 1015.0f; // Barometric Pressure for Queens, NY

Adafruit_BMP280 bmp(BMP_CS); // Hardware SPI, CS only

void setup() {
 Serial.begin(9600);
 pinMode(BMP_CS, OUTPUT); // Required for SPI on Mega

 if (!bmp.begin()) {
 Serial.println(F("BMP280 not found. Check wiring."));
 while (true) delay(10);
 }

 // FORCED mode: manual one-shot measurement
 bmp.setSampling(Adafruit_BMP280::MODE_FORCED,
 Adafruit_BMP280::SAMPLING_X1, // Temp oversampling
 Adafruit_BMP280::SAMPLING_X1, // Pressure oversampling
 Adafruit_BMP280::FILTER_OFF, // No IIR filter
 Adafruit_BMP280::STANDBY_MS_1); // Not used in FORCED

}

void loop() {
 bmp.takeForcedMeasurement(); // A function created by the Adafruit BMP280 library

 float temp = bmp.readTemperature();
 float press = bmp.readPressure();
 float alt = bmp.readAltitude(seaLevelPressure_hPa);

 Serial.print(F("T: ")); Serial.print(temp); Serial.print(F(" *C | ")); // Prints temperature
 Serial.print(F("P: ")); Serial.print(press); Serial.print(F(" Pa | ")); // Prints pressure
 Serial.print(F("Alt: ")); Serial.print(alt); Serial.println(F(" m")); // Prints approximate altitude

 delay(1000); // Optional: set based on desired logging rate (ms)
}

Make sure the baud rate in the
Serial Monitor matches the one
defined in your code. Here, it is set
to 9600 as shown in:

Serial.begin(9600)

BMP280 Test Results

| 44

The Serial Monitor should display
temperature, pressure, and
altitude readings once every
second, as shown in the example.

If the readings appear consistently
and update at the expected one
second interval, the sensor is
operating correctly.

Serial Output

Module V
Adafruit LED Backpack Counter

LED Backpack Counter Operational Test

| 46

Follow the instructions to complete a functional test of the LED Backpack Counter. This will verify that the display is operating correctly, showing
accurate values, and properly communicating with the system. Once the test passes, the display is ready for use in your project.

Figure 6.01 – Adafruit LED Backpack Counter

S
C
L

S
D
A

G
N
D

V
C
C

| 47

Launch Program

The code you write in the Arduino IDE is called a sketch, and
the Arduino compiler within the program handles all the setup
to convert it into machine language for the microcontroller. It
utilizes a simplified subset of C++ with a few custom libraries
simplifying C++ to be more accessible for prototyping and
hardware interaction.

Locate the Arduino IDE icon on your desktop and
launch the program

Sketches

| 48

Essential Libraries

Arduino libraries are packaged collections of functions and
drivers that extend the Arduino’s capabilities to work with
specific hardware or features.

1) Click on the Libraries icon in the left-hand panel
of the Arduino IDE.

2) Use the search bar to find and install the latest
versions of the following library:

o Adafruit LED Backpack
o TimerOne

What are Libraries?

Be sure to select Install All when prompted about dependencies.

Arduino to PC USB Connection

| 49

Connecting the USB Type-B cable between your computer and the Arduino board establishes a bidirectional communication link, allowing your
computer to upload code to the microcontroller while also enabling the Arduino to send data back to the computer.

Figure 6.02 – Arduino-PC USB Connection

Connect the USB Type-B cable to your
computer and the Arduino board.

LED Backpack Counter Wiring Setup

| 50

The LED Backpack Counter communicates with the Arduino ATMega 2560 via I2C (Inter-Integrated Circuit). It uses SDA (data) and SCL (clock) lines,
which on the Mega 2560 correspond to pins 20 and 21. This setup allows the microcontroller to send numeric data to the display efficiently, with
additional connections for power (5V) and ground (GND) to complete the circuit.

Connections

5V

GND

SCL1

SDA1

+

-

C (SCL)

D (SDA)

Figure 6.03 – Arduino ATMega2560 - LED Backpack Counter Wiring Setup

Arduino Counter

DC +-

SCL1 and SDA1 are not labeled
on the board surface like the
other pins. Instead, their labels
are printed directly on the black
socket connector.

Attach the LED Backpack Counter to the
breadboard using the jumper wires to
make the following connections.

LED Backpack Counter Wiring Setup

| 51

This photo shows the physical wiring of the LED Backpack Counter connected to the Arduino Mega 2560. Verify that the jumper wires are correctly
placed and securely connected. Also make sure the 5V and GND lines are properly seated as any loose power connection can cause the display to
flicker or fail to initialize.

Connections

Figure 6.04 – Arduino ATMega2560 - LED Backpack Counter Wiring Setup

5V

GND

SCL1

SDA1

+

-

C (SCL)

D (SDA)

Arduino Counter

LED Backpack Counter Test Sketch

Code Block

| 52

Read through the following code
and try to understand the
instructions being given to the
Arduino.

Once done, paste the following
Arduino sketch into the IDE and
upload it to verify that the module
is functional.

#include <Wire.h>
#include <TimerOne.h>
#include <Adafruit_LEDBackpack.h>

Adafruit_7segment matrix;

volatile uint16_t timerCount = 0; // use uint16_t, saves RAM unless you exceed 65535

void secondElapsed() {
 timerCount++; // fast, atomic on AVR for uint16_t

}

void setup() {
 Serial.begin(9600);
 matrix.begin(0x70); // HT16K33 default I2C address
 matrix.print(0); // show initial value
 matrix.writeDisplay();

 Timer1.initialize(1000000); // 1 second in microseconds
 Timer1.attachInterrupt(secondElapsed); // ISR triggers every 1 second

}

void loop() {
 static uint16_t lastCount = 0;
 uint16_t currentCount;

 noInterrupts(); // safely copy volatile variable
 currentCount = timerCount;
 interrupts();

 if (currentCount != lastCount) {
 lastCount = currentCount;
 matrix.print(currentCount);
 matrix.writeDisplay(); // update only when needed

 Serial.print(F("LED Display: ");
 Serial.print(currentCount);
 }

}

Make sure the baud rate in the
Serial Monitor matches the one
defined in your code. Here, it is set
to 9600 as shown in:

Serial.begin(9600)

LED Backpack Counter Test Results

Serial Output

| 53

The LED display should show a
count that increases by 1 every
second, and the Serial Monitor
should display the same count
shown on the LED Backpack
Counter.

If both displays are synchronized
and updating as expected, the
system is functioning correctly and
ready for use.

Module VI
Adafruit Ultimate GPS Breakout V3

Ultimate GPS Breakout V3 Operational Test

| 55

Follow the instructions to complete a functional test of the GPS Module. This will verify that the GPS is acquiring a signal, providing accurate location
data, and communicating properly with the system. Once the test passes, the module is ready for integration into your project.

Figure 7.02 – Adafruit Ultimate GPS Breakout V3

Ultimate GPS Breakout V3 Satellite Fix Indicator

| 56

Figure 7.01 – Adafruit Ultimate GPS Breakout V3 Data Output Pins

The FIX LED indicates the GPS module’s lock status. When the module is searching for satellites, the LED blinks rapidly (about once per second). Once
it obtains a valid position fix—using signals from at least 3 satellites—the LED slows down and begins blinking once every 15 seconds. This change in
blink rate lets you know that the GPS has a reliable location fix and is actively tracking satellites.

The FIX LED will flash once every 15
seconds after acquiring your position.

Ultimate GPS Breakout V3 Output

| 57

Figure 7.01 – Adafruit Ultimate GPS Breakout V3 Data Output Pins

The GPS module outputs data using the NMEA (National Marine Electronics Association) standard—readable ASCII text sentences sent over a serial
connection. These sentences include key information such as time, latitude, longitude, altitude, speed, fix status, and satellite count.

In addition to serial data, the module features a PPS (Pulse Per Second) pin, which outputs a precise 1 Hz pulse aligned with the start of each second.
This pulse is highly accurate and is used for time synchronization in applications requiring precise timing.

GPS data is sent through the TX pin
using the NMEA format, while the PPS
pin outputs a 1Hz pulse (one pulse per
second) for accurate time sync.

GGA

GSA

GSV

RMC

VTG

Global Positioning System Fixed Data

GNSS DOP and Active Satellites

GNSS Satellites in View

Recommended Minimum Specific Data

Course Over Ground and Ground Speed

Sentence Types Data Type

Refer to the appendix for full sentence breakdowns.

NMEA Format Sentence Types

| 58

The GPS module outputs data in standard NMEA sentences, each beginning with a $ symbol and carrying specific types of information. Sentence
types include:

Each sentence is updated once per second by default and can be selectively enabled or disabled for performance tuning or bandwidth reduction.

$GPGGA – Provides essential fix data including time, latitude, longitude, fix status, number of satellites, and altitude.

$GPGSA – Lists which satellites are used in the fix and provides Dilution of Precision (DOP) values that indicate GPS accuracy.

$GPGSV – Describes the satellites currently in view, including their elevation, azimuth, and signal strength.

$GPRMC – Offers the minimum recommended navigation data: time, date, fix validity, speed over ground, and course over ground.

$GPVTG – Reports the actual ground track angle and speed in both knots and kilometers per hour.

| 59

Launch Program

The code you write in the Arduino IDE is called a sketch, and
the Arduino compiler within the program handles all the setup
to convert it into machine language for the microcontroller. It
utilizes a simplified subset of C++ with a few custom libraries
simplifying C++ to be more accessible for prototyping and
hardware interaction.

Locate the Arduino IDE icon on your desktop and
launch the program

Sketches

| 60

Essential Libraries

Arduino libraries are packaged collections of functions and
drivers that extend the Arduino’s capabilities to work with
specific hardware or features.

1) Click on the Libraries icon in the left-hand panel
of the Arduino IDE.

2) Use the search bar to find and install the latest
versions of the following library:

o Adafruit GPS Library

What are Libraries?

Be sure to select Install All when prompted about dependencies.

Arduino to PC USB Connection

| 61

Connecting the USB Type-B cable between your computer and the Arduino board establishes a bidirectional communication link, allowing your
computer to upload code to the microcontroller while also enabling the Arduino to send data back to the computer.

Figure 7.03 – Arduino-PC USB Connection

Connect the USB Type-B cable to your
computer and the Arduino board.

Adafruit Ultimate GPS Breakout V3 - PPS Wiring

| 62

Connections

GND

5V

GND

VIN

Figure 7.04 – Arduino ATMega2560 - Adafruit Ultimate GPS Breakout V3 - PPS Wiring Setup

Arduino GPS

The cable plugged into the socket at
the top right of the GPS module is the
satellite antenna. It must be
connected for the module to receive
satellite signals and provide GPS data.

Pin 48 PPS

The GPS module provides a PPS (Pulse Per Second) output, which emits a square pulse precisely once per second. This pulse is synchronized to GPS
satellite time, which is maintained by atomic clocks onboard the satellites. When connected to the Arduino ATMega 2560, the PPS pin provides a
highly accurate time reference.

Attach the GPS module to the breadboard
using the jumper wires to make the following
connections.

Adafruit Ultimate GPS Breakout V3 - PPS Wiring

| 63

This photo shows the PPS wiring connected to the Arduino Mega 2560. The PPS output from the GPS module is wired directly to digital pin 48, which
serves as the input capture pin for Timer 5. Verify that power and ground are securely connected, as unstable power can disrupt signal accuracy.
Lastly, ensure the GPS antenna is properly attached, since the PPS signal is only valid when the module has a satellite fix.

Connections

Figure 7.05 – Arduino ATMega2560 - Adafruit Ultimate GPS Breakout V3 Wiring Setup

When you power on the GPS module,
the FIX LED will start blinking. This
indicates that it is searching for
satellites. Once a position fix is
acquired, the module will begin
transmitting NMEA data.

GND

5V

GND

VIN

Arduino GPS

Pin 48 PPS

Adafruit Ultimate GPS Breakout V3 - PPS Test Sketch

Code Block

| 64

Read through the following code
and try to understand the
instructions being given to the
Arduino.

Once done, paste the following
Arduino sketch into the IDE and
upload it to verify that the module
is functional.

Make sure the baud rate in the
Serial Monitor matches the one
defined in your code. Here, it is set
to 115200 as shown in:

Serial.begin(115200)

#define PPS_PIN 48 // ICP5 on ATmega2560

volatile bool ppsDetected = false;

// Interrupt Service Routine for Timer 5 Input Capture
ISR(TIMER5_CAPT_vect) {
ppsDetected = true;
}

void setup() {
 Serial.begin(115200);
 pinMode(PPS_PIN, INPUT);

// Configure Timer 5 for Input Capture on rising edge, no prescaler
 TCCR5A = 0;
 TCCR5B = _BV(ICES5) | _BV(CS50); // ICES5: rising edge, CS50: no prescaler
 TIMSK5 = _BV(ICIE5); // Enable Timer 5 Input Capture interrupt
}

void loop() {
 if (__builtin_expect(ppsDetected, 0)) {
 ppsDetected = false;
 Serial.println("PPS signal detected on pin 48!");
 }
}

Adafruit Ultimate GPS Breakout V3 - PPS Test Results

Serial Output

| 65

The Serial Monitor should display
a message each time the GPS
module sends a PPS pulse,
confirming that a rising edge was
successfully detected on pin 48.

If the messages appear once per
second, aligning with the GPS’s 1
Hz pulse, the PPS signal is being
received and processed correctly.

Adafruit Ultimate GPS Breakout V3 - NMEA Wiring

| 66

Connections

Pin 19 (RX1)

GND

5V

TX

RX

GND

VIN

Figure 7.06 – Arduino ATMega2560 - Adafruit Ultimate GPS Breakout V3 Wiring Setup

Arduino GPS

The cable plugged into the socket at
the top right of the GPS module is the
satellite antenna. It must be
connected for the module to receive
satellite signals and provide GPS data.

Pin 18 (TX1)

The GPS module connects to the Arduino Mega 2560 through a UART (Universal Asynchronous Receiver-Transmitter) interface. It uses the TX
(transmit) and RX (receive) lines to send and receive serial data, allowing the microcontroller to receive NMEA sentences from the GPS in real time.

Attach the GPS module to the breadboard
using the jumper wires to make the following
connections.

Adafruit Ultimate GPS Breakout V3 - NMEA Wiring

| 67

This photo illustrates the wiring based on the connection chart. Ensure that all jumper wires follow the correct orientation and are firmly seated. Pay
special attention to the TX/RX crossover and the power/ground lines, as improper connections can prevent the GPS from sending data or powering
up.

Connections

Figure 7.07 – Arduino ATMega2560 - Adafruit Ultimate GPS Breakout V3 Wiring Setup

When you power on the GPS module,
the FIX LED will start blinking. This
indicates that it is searching for
satellites. Once a position fix is
acquired, the module will begin
transmitting NMEA data.

Pin 19 (RX1)

GND

5V

TX

RX

GND

VIN

Arduino GPS

Pin 18 (TX1)

Adafruit Ultimate GPS Breakout V3 - NMEA Test Sketch

Code Block

| 68

Read through the following code
and try to understand the
instructions being given to the
Arduino.

Once done, paste the following
Arduino sketch into the IDE and
upload it to verify that the module
is functional.

Make sure the baud rate in the
Serial Monitor matches the one
defined in your code. Here, it is set
to 9600 as shown in:

Serial.begin(9600)

void setup() {
 Serial.begin(9600);
 Serial1.begin(9600);
}

void loop() {
 while (Serial1.available()) {
 Serial.write(Serial1.read());
 }
}

Adafruit Ultimate GPS Breakout V3 - NMEA Test Results

Serial Output

| 69

The Serial Monitor should display
NMEA sentences from the GPS
receiver, like the example shown
here.

If NMEA sentences appear
continuously and update once per
second, the GPS module is
communicating properly with the
microcontroller and is ready for
use in your application.

Module VII
ATMega2560 – Frequency Characterization

ATMega2560 – Ceramic Resonators

| 71

Rated Frequency

Ceramic resonators are electronic components that generate stable oscillating signals for clocking microcontrollers and digital systems. They use a
piezoelectric ceramic element to create mechanical vibrations at a specific frequency when voltage is applied. These vibrations are converted into an
electrical signal that serves as a system clock. Ceramic resonators are valued for their small size, fast startup time, and internal capacitor integration,
which simplifies circuit design.

The ATmega2560 microcontroller is
designed to operate at a rated clock
frequency of 16MHz when powered
at 5V.

This defines how many cycles the
CPU completes each second — 16
million, to be exact — which directly
influences how fast it can process
instructions and handle time-critical
tasks.

Think of the ceramic resonator as the
microcontroller’s heart — beating 16
million times per second to drive
every operation.

Figure 8.01 – Ceramic Resonators

16MHz
Resonator

ATMega2560 - Clock Cycles

| 72

Clock Period

Figure 8.02 – Clock Period Calculation

Rated at 16MHz, the ATMega2560 completes 16 million cycles per second, and with each cycle, it can perform part of an instruction or complete
simple ones entirely. The rated frequency of 16 MHz directly defines how quickly the microcontroller processes instructions, communicates with
peripherals, or toggles pins. Faster ratings mean faster execution, making the clock an essential measure of the microcontroller’s speed and precision.

The clock period is the amount of
time it takes for one complete cycle
of the microcontroller’s clock signal.

It is directly derived from the clock
frequency (16MHz) which defines
how many cycles occur each
second. To calculate the clock
period, you simply take the inverse
of the frequency.

A clock rated at 16MHz will take 62.5
nanoseconds (ns) to complete one
cycle.

1 second

16,000,000 cycles
= 62.5 nanoseconds per cycle

16MHz Ceramic Resonator
(Clock Period Calculation)

ATMega2560 - Oscillator Drift

| 73

External Influences

Oscillator drift refers to small, gradual changes in the frequency output of a ceramic resonator over time. While ceramic resonators are compact and
convenient for clock generation, they are more sensitive to external influences. Factors such as temperature fluctuations, supply voltage variations,
mechanical vibration, and material aging can cause the output frequency to deviate from its rated value. For instance, a ceramic resonator rated at
16MHz might oscillate at 16,000,100 Hz or 15,999,800 Hz depending on its environment. Though the drift is typically small (measured in parts per
million, or ppm), it can affect long-term timing accuracy in systems that depend on precise intervals.

o Supply voltage fluctuations

o Temperature changes

o Aging of the material

o Mechanical stress or vibration

Figure 8.03 – External Influences on Rated Frequency

Knowing the actual frequency —
accounting for oscillator drift — is
essential before using the Arduino in
precise timing applications.

ATMega2560 Frequency Characterization Test

| 74

Use the following instructions to complete a frequency characterization test of the Arduino ATMega2560. This will measure the actual clock
frequency of the microcontroller by comparing it against a known accurate reference signal— the PPS (pulse-per-second) output from a GPS module.
Since the PPS signal generated by the GPS module is accurate to within ±30 nanoseconds, any significant deviation from the expected cycle count
directly reveals the oscillator's drift from its rated frequency.

Figure 8.04 – PPS Signal with Expected Interval Timing

PPS Signal at a 16MHz Rated Frequency

16,000,000
cycles

16,000,000
cycles

16,000,000
cycles

Terminology

o Clock Frequency:

The duration of one clock cycle,
measured in seconds.

A single tick of the clock signal. It
represents the smallest unit of time
in which an instruction or operation
can begin or complete.

The number of clock cycles that
occur per second, measured in
hertz (Hz).

o Clock Cycle:

o Clock Period:

| 75

Launch Program

The code you write in the Arduino IDE is called a sketch, and
the Arduino compiler within the program handles all the setup
to convert it into machine language for the microcontroller. It
utilizes a simplified subset of C++ with a few custom libraries
simplifying C++ to be more accessible for prototyping and
hardware interaction.

Locate the Arduino IDE icon on your desktop and
launch the program

Sketches

Arduino to PC USB Connection

| 76

Connecting the USB Type-B cable between your computer and the Arduino board establishes a bidirectional communication link, allowing your
computer to upload code to the microcontroller while also enabling the Arduino to send data back to the computer.

Figure 8.05 – Arduino-PC USB Connection

Connect the USB Type-B cable to your
computer and the Arduino board.

ATMega2560 Frequency Characterization Wiring Setup

| 77

Connections

GND

5V

GND

VIN

Figure 8.06 – Arduino ATMega2560 - Adafruit Ultimate GPS Breakout V3 - PPS Wiring Setup

Arduino GPS

The cable plugged into the socket at
the top right of the GPS module is the
satellite antenna. It must be
connected for the module to receive
satellite signals and provide GPS data.

Attach the GPS module to the breadboard
using the jumper wires to make the following
connections.

Pin 48 PPS

The GPS module provides a PPS (Pulse Per Second) output, which emits a square pulse precisely once per second. This pulse is synchronized to GPS
satellite time, which is maintained by atomic clocks onboard the satellites. When connected to the Arduino ATMega 2560, the PPS pin provides a
highly accurate time reference.

ATMega2560 Frequency Characterization Wiring Setup

| 78

This photo shows the PPS wiring connected to the Arduino Mega 2560. The PPS output from the GPS module is wired directly to digital pin 48, which
serves as the input capture pin for Timer 5. Verify that power and ground are securely connected, as unstable power can disrupt signal accuracy.
Lastly, ensure the GPS antenna is properly attached, since the PPS signal is only valid when the module has a satellite fix.

Connections

Figure 8.07 – Arduino ATMega2560 - Adafruit Ultimate GPS Breakout V3 Wiring Setup

When you power on the GPS module,
the FIX LED will start blinking. This
indicates that it is searching for
satellites. Once a position fix is
acquired, the module will begin
transmitting NMEA data.

GND

5V

GND

VIN

Arduino GPS

Pin 48 PPS

Frequency Characterization Test Sketch

Code Block

| 79

Read through the following code
and try to understand the
instructions being given to the
Arduino.

Once done, paste the following
Arduino sketch into the IDE and
upload it to verify that the module
is functional.

Make sure the baud rate in the
Serial Monitor matches the one
defined in your code. Here, it is set
to 115200 as shown in:

Serial.begin(115200)

#define ICP5_Pin 48

volatile uint32_t ovf = 0;
volatile uint16_t icr = 0;
volatile bool pps = false;

void setup() {
 Serial.begin(115200);
 pinMode(ICP5_Pin, INPUT);
 TCCR5A = 0;
 TCCR5B = (1 << ICES5) | (1 << CS50); // Rising edge, no prescaler
 TIMSK5 = (1 << ICIE5) | (1 << TOIE5); // Enable input capture + overflow
 TCNT5 = 0;
 sei();
}

ISR(TIMER5_OVF_vect) {
 ovf++;
}

ISR(TIMER5_CAPT_vect) {
 uint16_t t = ICR5;
 uint32_t o = ovf;

 if ((TIFR5 & (1 << TOV5)) && t < 1000) o++; // Overflow correction
 icr = t;
 ovf = o;
 pps = true;
}

void loop() {
 static uint32_t last = 0;
 if (pps) {
 noInterrupts();
 uint32_t ticks = ((uint32_t)ovf << 16) | icr;
 pps = false;
 interrupts();

 if (last) {
 Serial.print(F("Total Ticks: "));
 Serial.println(ticks - last);
 }
 last = ticks;
 }
}

Frequency Characterization Test Results

Serial Output

| 80

The Serial Monitor should display
the number of clock ticks counted
between each PPS (Pulse Per
Second) signal.

If everything is functioning correctly,
these values should be close to
16,000,000 ticks, matching the
16 MHz system clock.

We’ll now switch to PuTTY to log this
data for post-processing.

By collecting multiple tick values
using PuTTY — ideally 1,000 samples
or more — we can calculate the true
clock period of the resonator by
averaging the intervals between PPS
pulses.

Be sure to close the Serial Monitor
before running PuTTY as only one
program can access the COM port
at a time.

| 81

Session Configuration

o Locate the PuTTY icon on your desktop and launch
the program.

o Click on the Sessions menu item.
o Set the connection type to Serial to enable

communication between the Arduino and your
computer.

o Identify the COM port your ATmega2560 is using
(check under Arduino IDE → Tools → Port) and
enter it in PuTTY.

o Match the speed to the baud rate in your Arduino
sketch. For this setup, use 115200.

PuTTY Serial Port Parameters

Figure 8.08 – PuTTY - Session Configuration Menu

| 82

Logging Configuration

o Click on the Logging menu item from the left-hand
side.

o Select “All Session Output” under the session
logging options.

o Enter a name that reflects the data you’re
collecting. To choose a different save location,
click the Browse button.

PuTTY File Saving Parameters

Figure 8.09 – PuTTY - Logging Configuration Menu

You MUST close the Serial Monitor in the Arduino IDE
before starting PuTTY. Only one program can access
the COM port at a time — failure to do so will cause
connection errors.

o Once the Arduino IDE Serial Monitor is closed, hit Open
in PuTTY.

| 83

Data Collection

o Let the program run for at least 20 minutes before
closing the PuTTY window.

o When you're done, simply close PuTTY — it will
automatically save the session data to the file and
location you specified during setup.

o Locate the text file that was generated during the
session.

o Open the file and copy all the data from the text
file.

o Now, open Excel and paste the values into a single
column.

Export to Excel

Exporting Clock Data for Analysis

Figure 8.10 – PuTTY: Terminal Window and Text File

| 84

Key Metrics

Data Processing in Microsoft Excel

Figure 8.11 – Clock Frequency Scatter Plot

Clock Frequency

Clock Frequency Range
Identify the highest and lowest clock frequencies measured
between GPS PPS pulses.

Average Clock Frequency (measured in hertz)
Calculate by averaging the clock frequencies between PPS
pulses over time.

Average Clock Period (measured in seconds)
The average duration of one clock cycle, calculated as the
inverse of the average frequency. Indicates how long each cycle
takes to complete on average.

Clock Drift (measured in ppm)
Quantifies how much the system clock deviates from its
expected frequency. A positive or negative value shows if the
clock runs fast or slow.

Standard Deviation
Measures how much the cycle count varies from second to
second. A lower value indicates stable timing; a higher value
suggests jitter or noise in the oscillator.

o Create a plot like the one shown here using the
cycle count data to visualize any variation over
time. Record results and identify key metrics.

Module VIII
ATMega2560 – Frequency Shift by Temperature

Frequency Shift by Temperature

| 86

In this module, we measure the Arduino’s clock frequency using the PPS signal from the GPS module, as in the previous setup. However, this time we
conduct the experiment alongside a temperature sensor to examine how ambient temperature affects the clock’s stability over time, revealing
potential temperature-induced oscillator drift.

Figure 9.01 – Chart Displaying Temperature-Frequency Relationship

Temperature-Induced Frequency Drift

Temperature Drift Wiring Setup Pt. I

| 87

Connections

GND

5V

GND

VIN

Figure 9.02 – Arduino ATMega2560 - Adafruit Ultimate GPS Breakout V3 - PPS Wiring Setup

Arduino GPS

The cable plugged into the socket at
the top right of the GPS module is the
satellite antenna. It must be
connected for the module to receive
satellite signals and provide GPS data.

Attach the GPS module to the breadboard
using the jumper wires to make the following
connections.

Pin 48 PPS

The GPS module provides a PPS (Pulse Per Second) output, which emits a square pulse precisely once per second. This pulse is synchronized to GPS
satellite time, which is maintained by atomic clocks onboard the satellites. When connected to the Arduino ATMega 2560, the PPS pin provides a
highly accurate time reference.

Temperature Drift Wiring Setup Pt. II

| 88

The BMP280 uses SPI (Serial Peripheral Interface) to communicate with the Arduino ATMega 2560. SPI is a fast, synchronous protocol ideal for high-
speed sensor data transfer. It allows the microcontroller to exchange data with the sensor using a master-slave architecture over just four data lines.

Connections

3.3V

GND

Pin 52

Pin 50

Pin 51

Pin 53

VIN

GND

SCK

SDO

SDI

CS

Figure 9.03 – Arduino ATMega2560 - BMP280 Sensor Wiring Setup

Attach the BMP280 sensor to the
breadboard using the jumper wires to
make the following connections.

Arduino BMP280

Temperature Drift Complete Wiring Setup

| 89

This photo shows the Arduino connected to both the GPS module and a temperature sensor. The GPS provides precise PPS timing signals, while the
temperature sensor monitors ambient conditions. Together, these components allow us to analyze how temperature drift affects the Arduino’s
resonator over time by correlating changes in temperature with variations in measured tick counts between PPS pulses.

Connections

Arduino BMP280

3.3V

GND

Pin 52

Pin 50

Pin 51

Pin 53

VIN

GND

SCK

SDO

SDI

CS

Figure 9.04 – Arduino-BMP280 Sensor Wiring Setup

GND

5V

GND

VIN

Arduino GPS

Pin 48 PPS

Temperature Drift Test Sketch

Code Block

| 90

Read through the following code
and try to understand the
instructions being given to the
Arduino.

Once done, paste the following
Arduino sketch into the IDE and
upload it to verify that the module
is functional.

Make sure the baud rate in the
Serial Monitor matches the one
defined in your code. Here, it is set
to 115200 as shown in:

Serial.begin(115200)

#include <Arduino.h>
#include <SPI.h>
#include <Adafruit_BMP280.h>

#define PPS_PIN 48
#define BMP_CS 53 // chip select for BMP280

constexpr uint16_t OVERFLOW_CORRECTION_THRESHOLD = 1000;

volatile uint32_t OVF5 = 0;

struct Timestamp {
 volatile uint16_t count;
 volatile uint32_t overflow;
 volatile bool flag;
 uint32_t prevTicks = UINT32_MAX;
};

Timestamp pps;
Adafruit_BMP280 bmp(BMP_CS); // SPI constructor

void printInterval(uint32_t interval, float temperature) {
 Serial.print(temperature, 2);
 Serial.print(F(", "));
 Serial.println(interval);
}

void initTimer5() {
 TCCR5A = 0;
 TCCR5B = (1 << ICES5) | (1 << CS50); // rising edge, no prescale
 TIMSK5 = (1 << ICIE5) | (1 << TOIE5); // input capture + overflow
 TCNT5 = 0;
}

ISR(TIMER5_OVF_vect) { OVF5++; }

ISR(TIMER5_CAPT_vect) {
 pps.count = ICR5;
 pps.overflow = OVF5;
 pps.flag = true;
}

void setup() {
 Serial.begin(115200);
 pinMode(BMP_CS, INPUT);
 pinMode(PPS_PIN, INPUT);
 initTimer5();

 if (!bmp.begin(BMP_CS)) {
 Serial.println(F("BMP280 fail"));
 while (1);
 }

 bmp.setSampling(
 Adafruit_BMP280::MODE_NORMAL,
 Adafruit_BMP280::SAMPLING_X1, // fastest temperature
 Adafruit_BMP280::SAMPLING_X1, // fastest pressure
 Adafruit_BMP280::FILTER_OFF, // no filter
 Adafruit_BMP280::STANDBY_MS_1 // minimal standby
);
}

void loop() {
 if (pps.flag) {
 noInterrupts();
 uint16_t t = pps.count;
 uint32_t o = pps.overflow;
 pps.flag = false;
 interrupts();

 if ((TIFR5 & (1 << TOV5)) && t < OVERFLOW_CORRECTION_THRESHOLD) o++;

 uint32_t ticks = (o << 16) | t;
 uint32_t interval = (pps.prevTicks != UINT32_MAX) ? (ticks - pps.prevTicks) : 0;
 pps.prevTicks = ticks;

 if (interval != 0) {
 float temperature = bmp.readTemperature();
 printInterval(interval, temperature);
 }
 }
}

Temperature Drift Test Results

Serial Output

| 91

The Serial Monitor should display
the data as shown in this example.

o The first value is the
temperature reading from the
BMP280 sensor (in degrees
Celsius).

o The second value is the
number of clock ticks counted
between two consecutive PPS
(Pulse Per Second) signals
from the GPS module.

Now that we’ve confirmed
everything is working correctly, it’s
time to begin recording data using
PuTTY.

Be sure to close the Serial Monitor
before running PuTTY as only one
program can access the COM port
at a time.

| 92

Session Configuration

o Locate the PuTTY icon on your desktop and launch
the program.

o Click on the Sessions menu item.
o Set the connection type to Serial to enable

communication between the Arduino and your
computer.

o Identify the COM port your ATmega2560 is using
(check under Arduino IDE → Tools → Port) and
enter it in PuTTY.

o Match the speed to the baud rate in your Arduino
sketch. For this setup, use 115200.

PuTTY Serial Port Parameters

Figure 8.08 – PuTTY - Session Configuration Menu

| 93

Logging Configuration

o Click on the Logging menu item from the left-hand
side.

o Select “All Session Output” under the session
logging options.

o Enter a name that reflects the data you’re
collecting. To choose a different save location,
click the Browse button.

PuTTY File Saving Parameters

Figure 9.06 – PuTTY - Logging Configuration Menu

You MUST close the Serial Monitor in the Arduino IDE
before starting PuTTY. Only one program can access
the COM port at a time — failure to do so will cause
connection errors.

o Once the Arduino IDE Serial Monitor is closed, hit Open
in PuTTY.

| 94

Data Collection

o Let the program run for one week before closing
the PuTTY window.

o When you're done, simply close PuTTY — it will
automatically save the session data to the file and
location you specified during setup.

o Locate the text file that was generated during the
session.

o Open the file and copy all the data from the text
file.

o Now, open Excel and paste the values into a single
column.

Export to Excel

Exporting Drift Data for Analysis

Figure 9.07 – PuTTY: Terminal Window and Text File

| 95

Key Metrics

Data Processing in Microsoft Excel

Figure 9.11 – Oscillator Drift Scatter Plot

Temperature-Induced Frequency Drift

Clock Frequency Range
Identify the highest and lowest clock frequencies measured
between GPS PPS pulses.

Temperature Range
Identify the minimum and maximum temperatures recorded
during the experiment.

Average Clock Frequency (measured in hertz)
Calculate by averaging the clock frequencies between PPS
pulses over time.

Average Clock Period (measured in seconds)
The average duration of one clock cycle, calculated as the
inverse of the average frequency. Indicates how long each cycle
takes to complete on average.

| 96

Key Metrics

Data Processing in Microsoft Excel

Figure 9.11 – Oscillator Drift Scatter Plot

Temperature-Induced Frequency Drift

Clock Drift (measured in ppm)
Quantifies how much the system clock deviates from its
expected frequency. A positive or negative value shows if the
clock runs fast or slow.

Standard Deviation
Measures how much the cycle count varies from second to
second. A lower value indicates stable timing; a higher value
suggests jitter or noise in the oscillator.

Temperature Coefficient of Frequency
Quantifies how much the clock frequency changes with
temperature, expressed in parts per million per degree Celsius
(ppm/°C).

Thermal Shift Direction & Rate
Identifies whether the clock speeds up or slows down as
temperature changes, and how rapidly this shift occurs across a
given temperature range.

Module IX
Cosmic Ray Shower Simulation:
Timestamping Pulse Generator Signals

Module X
XBee3 Radio Module – Wireless Induced Latency

Wireless GPS Data Relay System

| 99

Figure 9.01 – Wireless GPS Data Relay Concept

To enable wireless GPS data collection, we use a combination of Adafruit GPS and XBee3 radio modules. This setup allows GPS information to be
captured by one device and transmitted wirelessly to another system for processing.

o In our circuit, the Adafruit GPS module outputs
real-time NMEA data and a PPS (Pulse Per
Second) signal through a wired connection to an
XBee3 Coordinator.

o The Coordinator then transmits both the NMEA
data and the PPS signal wirelessly to a paired
XBee3 End Device.

o The End Device then sends the received NMEA
data and PPS Signal via a wired connection to
the ATMega2560.

Data Flow

Wired GPS/PPS
Data Transfer

Wireless GPS/PPS Data Transfer

Coordinator End-Device

Wired GPS/PPS
Data Transfer

Timing Implications of Wireless Transmission

| 100

Wireless

Figure 9.01 – Comparison of Wired vs. Wireless PPS Signal Delivery

Wired

PPS Signal Delivery – Wired vs Wireless

While GPS modules generate a highly accurate Pulse Per Second (PPS) signal synchronized to atomic satellite clocks, wirelessly transmitting this signal
using XBee3 modules introduces latency. Unlike a direct electrical connection, the PPS signal must be detected, queued, and packetized by the XBee3
Coordinator and then transmitted to the paired XBee3 End-Device which must decode and regenerate the signal.

This entire process can result in a variable delay influenced by factors such as RF interference, signal strength, protocol overhead, and the internal
processing time of the radio system. While the general shape and rising edge of the PPS signal may be preserved, its precise alignment with the true
UTC second may drift slightly when delivered wirelessly as seen in the chart below.

Quantifying Wireless Transmission Latency

| 101

Figure 9.01 – Quantifying Latency in PPS Signals

PPS Latency– Wired vs Wireless

While GPS modules generate a highly accurate Pulse Per Second (PPS) signal synchronized to atomic satellite clocks, wirelessly transmitting this signal
using XBee3 modules introduces latency. Unlike a direct electrical connection, the PPS signal must be detected, queued, and packetized by the XBee3
Coordinator and then transmitted to the paired XBee3 End-Device which must decode and regenerate the signal.

This entire process can result in a variable delay influenced by factors such as RF interference, signal strength, protocol overhead, and the internal
processing time of the radio system. While the general shape and rising edge of the PPS signal may be preserved, its precise alignment with the true
UTC second may drift slightly when delivered wirelessly as seen in the chart below.

Wireless

Wired

	Introduction
	Slide 1: Introduction
	Slide 2: What Are Cosmic Rays?
	Slide 3: Cosmic Ray Showers
	Slide 4: Muon-Induced Photons
	Slide 5: Photomultiplier Tubes (PMTs)
	Slide 6: Cosmic Ray Detector Setup
	Slide 7: Signal Processing Module
	Slide 8: Arduino ATMega 2560
	Slide 9: Analog to Digital Converter (ADC)
	Slide 10: Raspberry Pi
	Slide 11: Applications

	Module I - Hardware Overview
	Slide 12: Module I
	Slide 13: What is Arduino?
	Slide 14: Components & Accessories
	Slide 15: Arduino ATMega2560 Microcontroller
	Slide 16: Adafruit BMP280 Pressure & Temperature Sensor
	Slide 17: Adafruit LED Backpack Counter
	Slide 18: Adafruit Ultimate GPS Breakout V3
	Slide 19: XBee Dongle
	Slide 20: XBee3 Radio Module
	Slide 21: Breadboard & Jumper Wires

	Module II - Software Overview
	Slide 22: Module II
	Slide 23: Required Software
	Slide 24: Arduino IDE
	Slide 25: Digi XCTU
	Slide 26: Putty
	Slide 27: Microsoft Excel

	Module III - Arduino IDE Setup
	Slide 28: Module III
	Slide 29: Arduino to PC USB Connection
	Slide 30: Launch Program
	Slide 31: Essential Libraries
	Slide 32: Board Selection
	Slide 33: Port Selection
	Slide 34: Serial Monitor Interface
	Slide 35: Serial Monitor Interface

	Module IV - Adafruit BMP280 Temp. & Pressure Sensor
	Slide 36: Module IV
	Slide 37: BMP280 Operational Test
	Slide 38: Launch Program
	Slide 39: Essential Libraries
	Slide 40: Arduino to PC USB Connection
	Slide 41: BMP280 Wiring Setup
	Slide 42: BMP280 Wiring Setup
	Slide 43: BMP280 Test Sketch
	Slide 44: BMP280 Test Results

	Module V - LED Backpack Counter
	Slide 45: Module V
	Slide 46: LED Backpack Counter Operational Test
	Slide 47: Launch Program
	Slide 48: Essential Libraries
	Slide 49: Arduino to PC USB Connection
	Slide 50: LED Backpack Counter Wiring Setup
	Slide 51: LED Backpack Counter Wiring Setup
	Slide 52: LED Backpack Counter Test Sketch
	Slide 53: LED Backpack Counter Test Results

	Module VI - Adafruit Ultimate GPS Breakout V3
	Slide 54: Module VI
	Slide 55: Ultimate GPS Breakout V3 Operational Test
	Slide 56: Ultimate GPS Breakout V3 Satellite Fix Indicator
	Slide 57: Ultimate GPS Breakout V3 Output
	Slide 58: NMEA Format Sentence Types
	Slide 59: Launch Program
	Slide 60: Essential Libraries
	Slide 61: Arduino to PC USB Connection
	Slide 62: Adafruit Ultimate GPS Breakout V3 - PPS Wiring
	Slide 63: Adafruit Ultimate GPS Breakout V3 - PPS Wiring
	Slide 64: Adafruit Ultimate GPS Breakout V3 - PPS Test Sketch
	Slide 65: Adafruit Ultimate GPS Breakout V3 - PPS Test Results
	Slide 66: Adafruit Ultimate GPS Breakout V3 - NMEA Wiring
	Slide 67: Adafruit Ultimate GPS Breakout V3 - NMEA Wiring
	Slide 68: Adafruit Ultimate GPS Breakout V3 - NMEA Test Sketch
	Slide 69: Adafruit Ultimate GPS Breakout V3 - NMEA Test Results

	Module VII - Frequency Characterization
	Slide 70: Module VII
	Slide 71: ATMega2560 – Ceramic Resonators
	Slide 72: ATMega2560 - Clock Cycles
	Slide 73: ATMega2560 - Oscillator Drift
	Slide 74: ATMega2560 Frequency Characterization Test
	Slide 75: Launch Program
	Slide 76: Arduino to PC USB Connection
	Slide 77: ATMega2560 Frequency Characterization Wiring Setup
	Slide 78: ATMega2560 Frequency Characterization Wiring Setup
	Slide 79: Frequency Characterization Test Sketch
	Slide 80: Frequency Characterization Test Results
	Slide 81: Session Configuration
	Slide 82: Logging Configuration
	Slide 83: Data Collection
	Slide 84: Key Metrics

	Module VIII - Frequency Shift by Temperature
	Slide 85: Module VIII
	Slide 86: Frequency Shift by Temperature
	Slide 87: Temperature Drift Wiring Setup Pt. I
	Slide 88: Temperature Drift Wiring Setup Pt. II
	Slide 89: Temperature Drift Complete Wiring Setup
	Slide 90: Temperature Drift Test Sketch
	Slide 91: Temperature Drift Test Results
	Slide 92: Session Configuration
	Slide 93: Logging Configuration
	Slide 94: Data Collection
	Slide 95: Key Metrics
	Slide 96: Key Metrics

	Module IX - Timestamping Pulse Generator Signals
	Slide 97: Module IX

	Module VIII - Wireless Induced Latency
	Slide 98: Module X
	Slide 99: Wireless GPS Data Relay System
	Slide 100: Timing Implications of Wireless Transmission
	Slide 101: Quantifying Wireless Transmission Latency

