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Law of Reflection

• Euclid (c. 300 BCE), in his Optics, was the first to combine the idea 
that light traveled in straight lines (emitted from the eyes) and 
geometry to describe visual perception.
• Claudius Ptolemy (c. 100 – c. 170 CE), in his Optics, noted that a light 

ray reflected from a mirror “makes equal angles with the 
perpendicular to the mirror at the point [of reflection]. Ptolemy then 
described experiments with plane, convex, and concave mirrors that 
demonstrated the equality of angles.
• Law of Reflection: Angle of Incidence = Angle of Reflection
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Why Does Light Reflect at an Equal Angle?

• Heron (or Hero) of Alexandria (c. 100 CE), in his Catoptrics, noted that 
faster objects travel along straighter lines. Light, he argued, has an 
infinite speed. So, light takes a straight-line path, the shortest distance 
from point to point in a uniform medium.

• For reflection then, light also follows the shortest path. He showed 
geometrically that the Law of Reflection yields the shortest path for 
light between an object point, a mirror, and the eye.
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Proof
Line AB represents a plane mirror, 
O the object point, E the eye, 
R the reflection point, 
Q another mirror point, 
T the extension of ER, 
OS perpendicular to the mirror.
i, r are incidence, reflection angles

∠ERA = ∠ORS Complements to ∠𝑖, ∠𝑟
∠ERA = ∠TRS    Vertical angles
∠OSR = ∠TSR Perpendicular angles
Side RS common to DRSO and DRST
∆RSO ≅ ∆RST Angle-Side-Angle
RO = RT, SO = ST  Congruent triangles
Side QS common to DQSO and DQST
QO = QT                Congruent triangles
ERT is a straight line, shortest distance
(ER+RT) = (ER+RO) < (EQ+QO) = (EQ+QT)
ERO shortest distance from E to AB to O
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Reverse Direction Proof
Light from P (0, yP) reflects from 
mirror at R (xR, 0) to Q (xQ, yQ).

SR perpendicular to x-axis.
PR = 𝑥!" + 𝑦#" ⁄% "

RQ = 𝑥& − 𝑥!
"
+ 𝑦&"

⁄% "

Let L(xR) = PR + RQ.

For minimum L, !"!#!
= 0.

1
2
𝑥!" + 𝑦#" ⁄%& " 2𝑥!

+
1
2

𝑥' − 𝑥!
"
+ 𝑦'"

⁄%& "
2 𝑥' − 𝑥! −1

= 0

Simplifying, we get
#!

#!"$%#"
⁄% " =

#&&#!

#&&#!
"$%&

"
⁄% " ,

or cosq1 = cos q2, and q1 = q2.
q1 + i = 90∘= r + q2 . Thus, i = r.
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Ptolemy – the First Lab Report (1)

In addition to confirming the Law 
of Reflection, Ptolemy was the 
first to record measurements of 
refraction from air to water, air to 
glass, and water to class. 
He gave a

description of his apparatus, 
three data tables, 
mathematical fits to the data, 

and his general conclusion.

Ptolemy’s Data for Air-Water
Q1 (air) Q2(water)
(deg) (deg)
0 0.0
10 8.0
20 15.5
30 22.5
40 29.0
50 35.0
60 40.5
70 45.5
80 50.0
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Ptolemy – the First Lab Report (2)

Ptolemy regularized his data, 
the common practice with 
astronomical data at the time, and 
found a pattern:

q2 = 0.825*q1 – 0.0025*q12 .
The the table qc is calculated from the 
standard law of refraction '() *''() *(

= 𝑛+,, 
where qa and qw are the angles to the 
perpendicular in air and water, 
respectively.

naw = 
Ptolemy‘s Data: Air-Water 1.33

qa qw qc D = qw - qc
(deg) (deg) (deg) (deg)

0 0.0 0 0
10 8.0 7.50 0.50
20 15.5 14.90 0.60
30 22.5 22.08 0.42
40 29.0 28.90 0.10
50 35.0 35.17 -0.17
60 40.5 40.63 -0.13
70 45.5 44.95 0.55
80 50.0 47.77 2.23
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Ptolemy – the First Lab Report (3)

For his measurements of air-to-glass and water-to-glass refraction, 
Ptolemy found similar patterns. 
He concluded, qualitatively, that greater refraction occurs for 
substances with greater differences in density.
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Optics in Islam’s Golden Age

During Islam’s Golden Age fo science (c. 750 – 1250 CE), scholars 
preserved and commented upon the ancient Greek texts. 
Ibn Sahl’s On Burning Instruments (c. 980 CE) contains an equivalent 
version of our modern law of refraction, but it had no subsequent 
influence.
Ibn al-Haytham (Alhazan), in his Book of Optics (c. 1020 CE), showed
(1) vision occurs by light reflecting from an object to the eye,
(2) incident ray, reflected ray, and mirror normal are in same plane,
(3) gave the first clear description and analysis of the camera obscura,
(4) followed Ptolemy in measuring refraction, among many advances.
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Descartes and Law of Refraction (1)

Thomas Herriot (1601) and 
Willebrord Snell (1621) are 
credited with unpublished 
statements of the modern law of 
refraction.
The first published statement and 
rationale for the Law of Refraction 
is contained in René Descartes’ La 
Dioptrique (1637). Descartes 
imagined a tennis ball hit toward 
(AB) a thin cloth barrier (BE) in the 
figure.
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Descartes and Law of Refraction (2)

If the cloth slowed the 
perpendicular component of the 
tennis ball’s motion but did not 
change the horizontal component, 
the Law of refraction would result 
with the ball bending away  (BI) 
from the surface normal.
To imitate light traveling from air 
to water, the ball would have to 
be given a boost in perpendicular 
speed at the boundary, as 
Descartes noted.

11



Descartes and Law of Refraction (3)

Descartes argued that the law of 
refraction is that the lengths AH 
and HF are in constant ratio  for 
light traveling from one substance 
to another. This ratio is equivalent 
to the ratio of sines of angles to 
the perpendicular to the surface.
Elsewhere Descartes argues that 
light travels with infinite velocity, 
which confuses his argument. 
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Newton’s Particle Model of Refraction

In his Principia (1687) Newton 
acknowledged Rømer’s observation 
(1676) of finite light speed.
In Propositions 94 and 95, Newton 
demonstrated that a particle 
experiencing a force perpendicular, 
and not parallel, to the surface at a 
surface boundary would change 
speed in Medium 2 so that
!"# $"
!"# $#

= %#
%"
= 𝑛&' = constant,

which is the Law of Refraction for 
one color of light.

Medium 1 Medium 2

v1∥ = v1sinq1 = v2sinq2 = v2∥
!"# $"
!"# $#

= %#
%"
= 𝑛&' = constant,

independent of q1 for index of 
refraction n12 from medium 1 to 
medium 2.
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Why not a force parallel to the boundary?
Could Newton have explained refraction by supposing that light 
particles experienced a force parallel to the surface boundary?
Suppose several light rays from different directions hit the same place 
on the boundary at the same time. How could the surface exert forces 
in different directions on different light particles at the same time?
Also, the perpendicular component of particle speed would remain  
constant, rather than the parallel component. 

Then the expected relation relation would be   /01 2"
/01 2#

= 3#
3"
= constant,

which is not observed.
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Huygens’ Wave Model of Refraction (1)
In Treatise on Light (1690), 
Christiaan Huygens calculated 
light speed from Rømer’s
observations.
He advanced the wave model for 

light travel in analogy with sound.
Waves refract when transitioning 

from one medium to another with 
a different wave speed, as in the 
diagram.

A light ray corresponds to the light 
travel direction.
Wavelength = l ,  frequency = f
Wave speed = v = lf
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Huygens’ Wave Model of Refraction (2)
Wave frequency f , i. e. number of 
waves per second at a point, is the 
same in both media. 
The distance x between wave 
crests along the boundary is the 
hypotenuse of both triangles in 
the diagram.
The angle between wave crest and 
boundary equals the angle 
between wave direction (ray) and 
normal to boundary.

sinq1 = l1/x sinq2 = l2/x

sin 𝜃%
sin 𝜃"

=
⁄𝜆% 𝑥
⁄𝜆" 𝑥

=
𝜆%𝑓
𝜆"𝑓

=
𝑣%
𝑣"
= 𝑛%"
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Fermat’s Principle of Least Time (1)

Pierre de Fermat (1607 – 1665), lawyer and councilor at the 
Parlement de Toulouse (1620 – 1665), was an able 
mathematician in his spare time.
In 1657 Fermat received a letter from a friend noting that 
Heron’s principle of least distance did not explain light 
refraction.
In 1662 he replied that light refraction could be explained if 
(1) light traveled slower in a higher index medium and 
(2) the light path took the least time, not the least distance.
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Fermat’s Principle of Least Time (2)

Suppose light travels from point  
(0, y1) in Medium 1 (y>0) to a 
point on the boundary (x, 0) to 
point (x2, y2) in Medium 2 (y<0).
We want to find the path with the 
least travel time.
Index of refraction from vacuum 
to Medium 1 = n1.
Index of refraction from vacuum 
to Medium 2 = n2

Light speed in Medium 1:
v1 = c/n1

Light speed in Medium 2:
v2 = c/n2
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Fermat’s Principle of Least Time (3)

Let T = travel time for light from (0, y1) to (x,, 0) to (x2, y2).

𝑇 = #!$%"!
⁄" !

&"
+ #!'# !$%!!

⁄" !

&!

The x-value for the minimum time, is given by !"
!#
= 0.

1
2 𝑥" + 𝑦%" ⁄4% " 2𝑥

𝑣%
+
1
2 𝑥" = 𝑥 " + 𝑦"" ⁄4% " −2 𝑥" = 𝑥

𝑣"
= 0
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Fermat’s Principle of Least Time (4)

Rearranging, we get
1
𝑣$

𝑥
𝑥% + 𝑦$% ⁄$ % =

1
𝑣%

𝑥% − 𝑥
𝑥% − 𝑥 % + 𝑦%% ⁄$ %

!"# $0
%0

= !"# $1
%1

()* +"
()* +!

= &"
&!
= ⁄- ."

⁄- .!
= .!

."
= 𝑛/0 = constant
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Fermat’s Principle of Least Time (4)

Fermat’s Principle can, thus, explain straight-line travel, 
reflection, and refraction for light.
However, the principle was neglected at first because it 
opposed Descartes’ assumptions and later because it opposed 
Newton’s particle model for refraction.
The wave model for light was revived by Thomas Young and 
Augustin-Jean Fresnel in the early 19th century. Measurements 
of light speed in various media by Fizeau and Foucault in the 
mid-19th century confirmed the wave model predictions.
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