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Constant Values in a Changing World

Gold and silver maintain 
nearly constant weight 
over time, even when 
melted and reshaped as 
coins. Constant weight 
implied constant value.
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Conservation of Mass

Antoine Lavoisier  (1743-
1794), aided by his wife 
Marie-Anne, extended the 
constancy of weight to all 
chemical reactions, as 
measured by sensitive 
chemical balances.
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Conservation of Motion

René Descartes (1596-1650) in 
Principles of Philosophy (1644) 
asserted that 

“God . . . In the beginning created 
matter with both movement and 
rest, and now maintains in the 
sum total of matter, . . . the same 
quantity of motion and rest.”

This is the first statement of  
conservation principles 
(matter and motion) in physics.
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Laws of Nature

Descartes elaborated on his conservation of motion 
principle with 3 “laws of nature” and 7 collision rules. 
Laws of nature 1 and 2 were later combined in 
Newton’s first Law of Motion. 
However, law 3 and the 7 collision rules that followed 
were soon noted to be at odds with the results of 
actual collisions.
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Mechanical Philosophy

Despite those shortcomings, Descartes’ “mechanical 
philosophy,” that all change in motion should be 
explained by the “clear” and “distinct” actions of 
particle collisions, guided the thoughts of European 
natural philosophers until well after the triumph of 
Newton’s Principia (1687).
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17th Century Collision Rules (1)

European scientists agreed with Descartes mechanical 
philosophy but noted the failure of his collision rules. 
Consequently, the proper rules that governed collisions 
became a central problem.

7



17th Century Collision Rules (2)

European scientists agreed with Descartes mechanical 
philosophy but noted the failure of his collision rules. 
Consequently, the proper rules that governed collisions 
became a central problem.

In answer to a 1668 call from the Royal Society of London to 
elucidate reliable rules for collisions, John Wallis, Christopher 
Wren, and Christiaan Huygens submitted responses.
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17th Century Collision Rules (3)

Huygens’ submission was the most comprehensive. 

In the absence of external forces, 
(1) for perfectly elastic collisions, the total scalar quantity mv2, 
later named “vis viva” by Gottfried Leibniz, is conserved, and
(2) for all collisions and explosions, the total vector quantity
mv, called the “quantity of motion” by Newton, is conserved.
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18th Century Controversy (1)

18th century European and English scientists argued over 
whether mv2 or mv was the “real” quantity of motion. 
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18th Century Controversy (2)

18th century European and English scientists argued over 
whether mv2 or mv was the “real” quantity of motion. 

Newton derived mv conservation as a corollary to his Laws of 
Motion. His followers advocated for the primacy of mv.
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18th Century Controversy (3)

18th century European and English scientists argued over 
whether mv2 or mv was the “real” quantity of motion. 

Newton derived mv conservation as a corollary to his Laws of 
Motion. His followers advocated for the primacy of mv.

Leibniz related the acquisition of mv2 by a falling body to its 
height of fall. Willem ‘s Gravesande confirmed this 
experimentally by dropping brass balls into soft clay (1722).
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Émilie du Châtelet (1706-1749)

Institutions de Physique 
(1740) reconciled ideas of 
Newton and Leibniz and 
emphasized mv2 and its 
transformations to other 
forms of energy.
Her translation of Newton’s 
Principia (1759) (with 
extensive commentary) is the 
standard French reference.
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19th Century Development (1)

Julius Mayer’s calculations and James Joule’s experiments  
(1840s) showed a constant ratio of (work done) to (heat 
produced) in several processes: energy conservation.
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19th Century Development (2)

Julius Mayer’s calculations and James Joule’s experiments 
(1840s) showed a constant ratio of (work done) to (heat 
produced) in several processes: energy conservation.
James Clerk Maxwell’s kinetic theory of gases (1860s) 
related gas temperature to mv2/2 of gas molecules.
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19th Century Development (3)

Julius Mayer’s calculations and James Joule’s experiments 
(1840s) showed a constant ratio of (work done) to (heat 
produced) in several processes: energy conservation.
James Clerk Maxwell’s kinetic theory of gases (1860s) 
related gas temperature to mv2/2 of gas molecules.
William Thomson and Peter Tait established the terms 
“kinetic energy” for mv2/2 and “momentum” for mv in 
Treatise on Natural Philosophy (1867). 
They emphasized conservation of energy in physics.
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20th Century Problem

Walter Kaufmann, Alfred Bucherer, and others measured the kinetic 
energy and momentum of high energy electrons from radioactive b-
decay in the early 1900s. They noted that KE=mv2/2 and p = mv did not 
apply unless they interpreted mass as a velocity dependent quantity.

The failure of KE = mv2/2 is seen in an experiment by William Bertozzi
with electrons in a linear accelerator at MIT (1962).
“The Ultimate Speed – An Experiment with High Energy Electrons” 
https://www.youtube.com/watch?v=B0BOpiMQXQA
W. Bertozzi, Am. J. Phys., 32, 551-555 (1964).

17

https://www.youtube.com/watch?v=B0BOpiMQXQA


20th Century Question

Scalar kinetic energy (mv2/2) and vector momentum (mv) are 
important and independent quantities related to motion. 
Energy and momentum are each conserved under appropriate 
circumstances. Angular momentum, also a vector quantity,  is 
a third conserved quantity of motion for particle interactions.

Why is nature constrained by three
conserved quantities of motion? 
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Emmy Noether (1882- 1935)

Emmy Noether answered the 
question in her 1915 paper. 
Einstein wrote in the New York Times
on May 4, 1935, in memorial,
“In the judgment of the most competent 
living mathematicians, Fraeulein Noether
was the most significant creative 
mathematical genius thus far produced 
since higher education of women began.”

Yet, few are aware of her work.
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Plus ça change, plus c’est la même chose. (1)
The more things change, the more they stay the same.

Symmetry:
In life – “harmonious balance and beautiful proportions”
In physics – “change without change”

Examples:
Continuous symmetry: rotation of a circle about its center by 
any angle 
Discrete symmetry: rotation of an equilateral triangle about its 
center by (n x 120) degrees for n = integer
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Plus ça change, plus c’est la même chose. (2)
The more things change, the more they stay the same.

In 1915 Emmy Noether proved that every continuous symmetry 
in the laws of physics implies a conserved quantity:

(1) time translation symmetry implies energy conservation,
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Plus ça change, plus c’est la même chose. (2)
The more things change, the more they stay the same.

In 1915 Emmy Noether proved that every continuous symmetry 
in the laws of physics implies a conserved quantity:

(1) time translation symmetry implies energy conservation,

(2) space translation symmetry implies momentum conservation,
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Plus ça change, plus c’est la même chose. (3)
The more things change, the more they stay the same.

In 1915 Emmy Noether proved that every continuous symmetry 
in the laws of physics, there is a conserved quantity:

(1) time translation symmetry implies energy conservation,

(2) space translation symmetry implies momentum conservation,

(3) space rotation symmetry implies angular momentum 
conservation.
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Conserved and Invariant Quantities

Conserved quantities in physics are those which remain 
the same from before to after some physical 
interaction, e. g. electric charge, energy, momentum.

Invariant quantities in physics are those which remain 
the same when measured in different inertial reference 
frames moving at constant velocity (boosted) relative 
to each other, e. g. electric charge, mass.
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Conserved Quantities and Invariant Laws

Noether’s theorem explains why energy, momentum, 
and angular momentum are locally conserved in 
physical interactions. But the theorem does not specify 
the formulation of the conserved quantities.
We want invariant laws of physics, i. e. the same in all 
inertial reference frames. And we want energy and 
momentum, though not invariant quantities, conserved 
in all inertial reference fames. 
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Newton’s Laws and Galilean Transformations

Rocket system (t’, x’, y’, z’) origin and axes overlap Lab system (t, x, y, z) 
origin and axes at time t = t’ = 0 and moves with constant velocity vR in 
the +x-direction. 
Galilean Transformations: t = t’, x = x’ + vRt’, y = y’, z = z’

Velocities: !"
!"!

= 1, 𝑣# =
!#
!"
= !(#!%&""!)

!"!
= !#!

!"!
+ 𝑣(

𝑣# = 𝑣#! + 𝑣( , 𝑣) = 𝑣)! , 𝑣* = 𝑣*!
Accelerations: 𝑎# = 𝑎#! , 𝑎) = 𝑎)! , 𝑎* = 𝑎*!

Forces:  For m = m’ ,   𝐹# = 𝐹#! , 𝐹) = 𝐹)! , 𝐹* = 𝐹*! INVARIANT
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Newton’s Laws and Lorentz Transformations

Consider the usual Rocket system (t’, x’, y’, z’)  and Lab system (t, x, y, z).
g = (1-vR2)-1/2 , c = 1 units, vR = Rocket system velocity along +x-axis.

Lorentz Transformations: t = g(t’ + vRx’), x = g(x’ + vRt’),      y = y’, z = z’

Velocities: !"
!"!

= γ 1 + 𝑣(𝑣#! , !#
!"!

= 𝛾(𝑣#! + 𝑣()

𝑣# =
⁄!# !"!

⁄!" !"!
=

,(&#!%&")
,(-%&"&#!)

=
&#!%&"
-%&"&#!

, 𝑣) =
&$!

,(-%&"&#!)
, 𝑣* =

&%!
,(-%&"&#!)

Accelerations: 𝑎# ≠ 𝑎#! , 𝑎) ≠ 𝑎)! , 𝑎* ≠ 𝑎*!

Forces:  For m = m’ ,   𝐹# ≠ 𝐹#! , 𝐹) ≠ 𝐹)! , 𝐹* ≠ 𝐹*! NOT INVARIANT
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Brief Aside on Velocity Composition (1)

𝑣! =
"!"#"#
$#"!""#

Earth orbital speed = 30 km/s = 10-4 c

For vR = vx’ = 10-4, vx = ? 

For vR = 0.5 and vx’ = 0.5, vx = ?

For vR = 0.5 and vx’ = 1.0, vx = ?
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Brief Aside on Velocity Composition (2)

𝑣! =
"!"#"#
$#"!""#

Earth orbital speed = 30 km/s = 10-4 c

For vR = vx’ = 10-4, vx = (2x10-4)(1 - 2x10-8),
only 2 parts in 108 less than the Newtonian value.
[NOTE: Earth escape speed is 11.2 km/s]

For vR = 0.5 and vx’ = 0.5, vx = %.'#%.'
$#(%.')(%.')

= $.%
$.*'

= 0.8

For vR = 0.5 and vx’ = 1.0, vx = $.%#%.'
$#($.%)(%.')

= $.'
$.'

= 1.0
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Brief Aside on Velocity Composition (3)

Show that a light flash moving along the +y’-axis of the Rocket frame 
with speed c=1, is observed to move along a diagonal line in the Lab 
frame with speed c=1. [NOTE: For this calculation,    vx’ = 0, vy’ = 1.]

Recall: 𝑣! =
"!"#"#
$#"#"!"

, 𝑣+ =
"$"

,($#"#"!")
, 𝛾 = $

$-"#
%
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Brief Aside on Velocity Composition (4)

Show that a light flash moving along the +y’-axis of the Rocket frame 
with speed c=1, is observed to move along a diagonal line in the Lab 
frame with speed c=1. [NOTE: For this calculation,    vx’ = 0, vy’ = 1.]

Recall: 𝑣! =
"!"#"#
$#"#"!"

, 𝑣+ =
"$"

,($#"#"!")
, 𝛾 = $

$-"#
%

𝑣* = 𝑣!* + 𝑣+* =
%#"#
$#%

*
+ $

, $#%

*
= 𝑣.* + 1 − 𝑣.*

𝑣* = 1 , 𝑣 = 1 Speed of light in vacuum is invariant.

v

vx

vy
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Dilemma (1)
Newton’s Laws of Motion for mechanics, based on his definition of 
momentum (mv), are invariant under Galilean transformations but not 
under Lorentz transformations.
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Dilemma (2)
Newton’s Laws of Motion for mechanics, based on his definition of 
momentum (mv), are invariant under Galilean transformations but not 
under Lorentz transformations.

Lorentz, Poincaré, and Einstein showed that Maxwell’s equations for 
electromagnetism are invariant under Lorentz transformations but not 
under Galilean transformations.
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Dilemma (3)
Newton’s Laws of Motion for mechanics, based on his definition of 
momentum (mv), are invariant under Galilean transformations but not 
under Lorentz transformations.

Lorentz, Poincaré, and Einstein showed that Maxwell’s equations for 
electromagnetism are invariant under Lorentz transformations but not 
under Galilean transformations

Many experiments, e. g. Michelson-Morley, muon time dilation, 
electron speed measurements, show that nature conforms to Lorentz 
transformations. How must we change our laws of mechanics?
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Redefinition (1)

We need to redefine energy and momentum for particles to
(1) maintain conservations principles,

(2) remain compatible to Lorentz transformations, and

(3) approximate the Newtonian definitions at speeds small 
compared to light speed.
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Redefinition (2)

20th Century
Keep the Newtonian definition of momentum (mv) by treating 
mass as velocity dependent. This led to the expressions 
“longitudinal mass”, “transverse mass”, “relativistic mass”.
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Redefinition (3)

20th Century
Keep the Newtonian definition of momentum (mv) by treating 
mass as velocity dependent. This led to the expressions 
“longitudinal mass”, “transverse mass”, “relativistic mass”.

21st Century
Treat mass an an intrinsic, invariant property of an object and 
change the definition of of momentum and kinetic energy.
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Redefinition (4)

Einstein (1905) proposed KE = m(g-1) for a particle in 
motion and E = m for a particle at rest, i. e. 
a particle’s rest energy equals its inertia. (c = 1 units)

Total energy of a moving particle is
E = m + KE = m + m(g-1) = gm .

Does this account for Bertozzi’s measurements?
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Redefinition (5)

On The Ultimate Speed Student Spreadsheet, 
work through one row of calculations for #1. 

Then work through items #2 and #4.
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Bertozzi Data

MEASUREMENTS CALCULATIONS THEORY (dimensionless)

KE Dt [+/-] Dt [+/-] v = Dd/Dt [+/-] v v2 [+/-] Newtonian Relativistic

(Mev) (division) (division) (10-8 s) (10-8 s) (108 m/s)
( 108

m/s) (m/m) v2 = 2KE/me v2 = 1 - (me/(me+KE))2

0 0 0 0 0 0 0 0
0.5 3.30 0.04 3.23 0.0392 2.60 0.03 0.866 0.751 0.019 1.96 0.745
1.0 3.14 0.04 3.08 0.0392 2.73 0.04 0.911 0.829 0.022 3.91 0.886
1.5 2.98 0.04 2.92 0.0392 2.88 0.04 0.959 0.921 0.025 5.87 0.935
4.5 2.90 0.04 2.84 0.0392 2.96 0.04 0.986 0.972 0.027 17.61 0.990

15.0 2.86 0.04 2.80 0.0392 3.00 0.04 1.000 0.999 0.029 58.71 0.999
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Bertozzi Plot
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Kaufmann, Bucherer, and Bertozzi

When Walter Kaufmann and Alfred Bucherer measured energy and 
momentum of high-speed electrons from radioactive b-decay in the early 
1900s, they found that simple Newtonian expressions did not match the 
data.

The QuarkNet Energy, Momentum, Mass Data Activity asks students to plot 
some of Kaufmann and Bucherer’s data to find a relation between E, p, and 
m.

Plots incorporating some of Kaufmann’s, Bucherer’s, and Bertozzi’s data up 
to KE = 1.5 MeV follow.
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Kaufmann, Bucherer, Bertozzi Data (1)
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Kaufmann, Bucherer, Bertozzi Data (2)
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Kaufmann, Bucherer, Bertozzi Data (3)
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Redefinition (6)

Electron mass is 0.511 MeV/c2. 
The straight line on the final plot is well represented by 
E2 = m2 + p2.

Exercise: Combine E = gm and E2 = m2 + p2 to show p = gmv
for particles with mass.

For photons (m = 0), E = p (c=1 units) 
or E = pc (conventional units).
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Redefinition (7)

To provide more theoretical underpinning to the m2 = E2 – p2

relationship, start with the invariant spacetime interval between two 
events Dt2 = Dt2 – (Dx2 + Dy2 + Dz2). The proper time, Dt, is the time 
measured by a clock in an inertial frame where the two events take 
place at the clock position.
Suppose the two events mark the infinitesimal change in position of a 
particle of mass m moving with velocity v in the +x-direction of the Lab 
system. Then dy = 0, dz = 0, and dx = vdt .

dt2 = dt2 – dx2 = dt2 – (vdt)2 = (1-v2)dt2 = (1/g)2dt2 (c=1 units).
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Redefinition (8)

Then 𝛾* = /0
/1

*
.    

Dividing dt2 = dt2 – dx2 by  dt2 , we get 

1 = /0
/1

*
− /!

/1

*
= /0

/1

*
− /0

/1
/!
/0

*
= 𝛾* − 𝛾*𝑣* .

Multiplying by m2 yields, 𝑚* = 𝛾*𝑚* − 𝛾*𝑚*𝑣* = 𝐸* − 𝑝* .
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Redefinition (9)

With our new definitions of particle energy (E = gm) 
and momentum (p = gmv), E and p transform between 
reference frames with Lorentz transformations 
analogous to the spacetime transformations, where
E replaces t and px replaces x.

The particle mass m is an invariant, 
the same in all reference frames.

49



Low Velocity Limit (1)

The definitions of particle energy (E = gm) and 
momentum (p = gmv), work well at high velocities, 
as measured by Kaufmann, Bucherer, Bertozzi, and 
many others. 

How do those definitions apply at low velocities?
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Low Velocity Limit (2)

Binomial expansion for x<1: 1 − 𝑥 ! ⁄# $ = 1 + #
$
𝑥 + %

&
𝑥$⋯

c = 1 units:   

𝐸 = 𝛾𝑚 = 1 − 𝑣$ ! ⁄# $𝑚 ≅ 1 +
1
2
𝑣$ 𝑚 = 𝑚 +

1
2
𝑚𝑣$

Conventional units: 

𝐸 ≅ 𝑚𝑐$ + #
$
𝑚𝑐$ '

(

$
= 𝑚𝑐$ + #

$
𝑚𝑣$
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Low Velocity Limit (3)

Binomial expansion for x<1: 1 − 𝑥 ! ⁄# $ = 1 + #
$
𝑥 + %

&
𝑥$⋯

c = 1 units: 
𝑝 = 𝛾𝑚𝑣 = 1 − 𝑣$ ! ⁄# $𝑚𝑣 ≅ 1 + #

$
𝑣$ 𝑚𝑣 ≅ 𝑚𝑣

Conventional units: 
𝑝𝑐 ≅ 𝑚𝑐$ '

(
or     𝑝 = 𝑚𝑣

At low velocities, we have traditional Newtonian expressions!
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Redefinition (10)

Our new definitions of particle energy (E = gm) and 
momentum (p = gmv) fulfill all our requirements. They
(1) maintain conservations principles,

(2) remain compatible to Lorentz transformations, and

(3) approximate the Newtonian definitions at speeds small 
compared to light speed.
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