The CMS Detector

Hallie Trauger Teaching Assistant Professor NC A&T State University

The Large Hadron Collider at CERN

The most powerful particle accelerator in the world!

Compact Muon Solenoid Detector

- Compact Diameter is about 15 m (nearly 50 feet) across).
- Muon Highly efficient muon tracking system <u>outside</u> the magnet.
- Solenoid 4T superconducting magnet. Provides the magnetic field for tracking!

Compact Muon Solenoid Detector

Most of the time: proton-proton collisions

Proton-proton collisions at 7 TeV (Run 1), 13 TeV (Run 2) and beyond

- Colliding two protons at high enough energies to study other kinds of particles (or even find new ones)
- This is how to do particle physics!
- Also how to win a Nobel Prize for observing the Higgs Boson (at right).

Occasionally: lead-lead (Pb-Pb) collisions

PbPb collisions at 2.76 TeV (Run 1) and 5 TeV (Run 2)

- Collide lead nuclei at close to the speed of light
- Produces sufficient density and temperature to generate a QGP
- <u>Briefly</u> produces a thermalized medium
- Detect final-state particles in tracker, calorimeters, etc.

Interactive Event Display: iSpy

https://www.i2u2.org/elab/cms/event-display/

Bonus: High Energy Nuclear Physics

Let's start at the very beginning ...

HISTORY OF THE UNIVERSE

...one microsecond after the Big Bang!

QCD Phase Diagram

Ordinary matter

- Quarks (up or down) held together by gluons
- **Protons** = 2 up quarks and one down quark
- **Neutrons** = 2 down quarks and 1 up quark

Quark Gluon Plasma

- Deconfined phase of quarks and gluons
- Predicted by quantum chromodynamics at sufficiently hot and dense conditions

QCD Phase Diagram – Why a Quark Gluon Plasma?

- We are used to electrodynamics: coupling strength <u>increases</u> at small distances
- The quantum chromodynamics coupling constant works the opposite way: the coupling constant is <u>smallest</u> at high densities = "asymptotic freedom"

QGP Recreated in the Laboratory

Thermodynamics of the QGP

- Simple considerations of density of mass states and finite hadron size suggests phase transition in range $T_C \approx 150 200$ MeV
- Lattice QCD: sign of phase transition in sharp rise in energy density ϵ at T_C \approx 175, with ϵ (T_C) \approx 0.5 1 GeV/fm³

Elementary Particles, Baryons, and Mesons

