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Abstract

The usual presentation of the postulates of quantum mechanics in textbooks introduces a variety of
ad-hoc axioms to describe the phenomena of measurement. These axioms make little logical sense even
though they accurately describe the empirical phenomenology of measurement. In this note, I will show
that these ad-hoc axioms are unnecessary. There is really only one axiom of quantum mechanics - namely
the Schrodinger equation. By supplementing this equation with the assumption that the Hamiltonians
that exist in the world are local, I will derive the phenomenology of measurement such as the collapse
of the wave-function, the emergence of probability from the deterministic Schrodinger equation and the
absence of measurements of macroscopic superpositions. Further, by observing that macroscopic bodies
are in coherent (or other suitably localized) states, I will also show how the Born rule emerges from this
description.

1 Introduction

Every professional physicist “knows” quantum mechanics i.e. given a quantum mechanical problem, the
physicist can, with the help of suitable stimulants, perform the requisite algebra and obtain the correct
result for what an experiment should see when a certain measurement is made. Our textbooks, after all,
do a wonderful job of drilling algebra into the undergraduate mind. This communal expertise ends with
algebraic ability - significant number of physicists do not understand what measurement actually means or
what it implies about the natural world. Astonishingly, even though the concept of measurement has been
understood for well over 50 years, our textbooks do a poor job of conveying this understanding. Moreover,
there is bizarre sociology in the field - there is active hostility towards wanting to answer this question, best
summarized by the “shut up and calculate” mentality i.e. one should stop asking questions about what a
fundamental physical process means and replace this curiosity with an unscientific robotic attitude where
the physicist is reduced to an algebraic tool.

Strange as this attitude is, I actually agree with it. A complete physical theory, which quantum mechanics
is, should be able to describe all of its features via computation instead of sliding into philosophical discourse.
But, when one engages in “shut up and calculate”, one should perform the full computation and not stop
midway. What you are going to see is that when you do perform the full calculation, quantum mechanics
does in fact describe measurement in a very simple and direct way, even though its consequences are bizarre.

I will begin in section 2 by first reviewing the standard postulates of quantum mechanics as described in
textbooks. In this section, I will spend some time making fun of the standard description of measurement
and how absurd it is for any one to seriously believe it. Following this exercise in mockery, in section 3, I
will show how the phenomenology of measurement can be derived from the Schrodinger equation as long as
one makes certain assumptions about the Hamiltonians that exist in our world. There is nothing original in
these parts of this paper - the understanding that I am hoping to convey exists in the community. But, I
have not come across a note where all of it has been written down. In section 4, I will conclude.
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2 The Postulates of Quantum Mechanics

Any reasonable textbook1 on quantum mechanics would teach you that the postulates of quantum mechanics
are as follows:

1. The complete physical state of a system is an element |Ψ〉 of a Hilbert space.

2. The time evolution of |Ψ〉 is described by the Schrodinger equation id|Ψ〉dt = H|Ψ〉 where H, the
Hamiltonian, is a Hermitean operator.

What do these postulates imply? First, since the Hamiltonian H is Hermitean, the time evolution is
unitary i.e. it is reversible. Second, the evolution is linear i.e. if there are a set of states |Ψk〉 that all
individually obey the Schrodinger equation, then so does the sum

∑
k ck|Ψk〉 for any arbitrary ck. There is

also no restriction on the physical size of the quantum state |Ψk〉. Protons, electrons, atoms, small molecules,
proteins, human beings and planets all obey the Schrodinger equation. That is, all of these objects are capable
of being placed in all sorts of superpositions. Importantly, the time evolution is fully deterministic - there is
no probability in the Schrodinger equation. Given an initial condition, the equation exactly tells you what
the final answer is without any uncertainty.

How well does the Schrodinger equation do in describing the world that we see?
Naively, not very well.
First, probability is one of the defining aspects of the phenomenology of quantum mechanics. How can

probability come from a nobly deterministic equation like the Schrodinger equation? Second, unitary time
evolution is reversible. But, the outcome of measurement in quantum mechanics is not reversible. Third,
if macroscopic objects can be placed in superposition, then it should be possible to place human beings in
superposition where the same human being is in multiple spatial locations. If that is the case, why do we
not see2 a macroscopic object in more than one location at the same time?

To explain all this, the textbooks invoke additional “measurement” postulates. These are:

1. The quantum state |Ψ〉 happily undergoes time evolution as per the Schrodinger equation. But then,
a measurement of some operator O occurs. When this happens, the time evolution of the Schrodinger
equation is temporarily halted.

2. The state |Ψ〉 gets expressed as |Ψ〉 =
∑
k αk|fk〉 where the |fk〉 are eigenstates of the operator O with

eigenvalue λk.

3. When the measurement is done, one “gets” the eigenvalue λk as the outcome of the measurement and
the probability of getting λk is |αk|2 (the so called “Born Rule”).

4. No matter what the initial state |Ψ〉 is, the state after measurement “collapses” to |fk〉.

5. This also explains why we do not see macroscopic superpositions where macroscopic objects such as
human beings are in spatial superpositions since such macroscopic objects are always “being measured”
and thus their quantum state always collapses to a specific location.

There is no doubt that these additional postulates describe what we experience when a measurement is
made. But, now is the time for the promised mockery. While experimentally accurate, these postulates are
not what one might expect from a physical theory. They look more like bizarre diktats produced by some
relentless bureaucratic engine that happily engages in assaulting reason for its own ends.

The diktat does not actually tell you what “measurement” is - after all, what is it that we actually do
when we make a measurement? All that is happening is that we take some quantum system made of atoms
and we bring it in contact with a measuring device that is also made of atoms. Now we know that atoms
interact with other atoms via the Schrodinger equation. But somehow when these atoms become part of
a “measuring device”, they suddenly decide to stop obeying the deterministic Schrodinger equation and
decide to engage in random activities such as quantum state “collapse”. After this temporary violation of

1To measure “reasonableness”, one may count the number of unauthorized copies of the book in circulation.
2Without the aid of certain “medicines” that can now be legally procured in certain US states.
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the Schrodinger equation, the atoms recover their good moral sense and go back into obeying it. The process
of measurement is thus more like a trip that the atoms make to the great state of Nevada where certain laws
of the United States are temporarily believed to be suspended.

How does an atom even know that it is part of a measuring device and can thus decide to ignore the
Schrodinger equation? For example, if the hydrogen atom in a water molecule decided to “measure” the
position of the electron in the adjoining oxygen atom, the water molecule would go berserk - the collapsed
electron’s position would imply that the water molecule is now in an excited state and no longer be the nice
staid molecule that we love. But if the same Hydrogen atom was in a “detector” it is supposed to have the
mysterious property of “collapsing” the quantum state of certain electrons that it has decided to measure
(but of course, not the electrons in the detector itself). The sentient behavior of the Hydrogen atom implied
by this postulate in fact lead to some unfortunate philosophical speculations by the early pioneers of quantum
mechanics relating the humble field of physics to lofty pursuits such as the philosophy of consciousness. In
more recent years, entrepreneurs have combined these poorly articulated concepts into profitable businesses,
beautifully illustrating the fundamental reason why capitalism has proven to be such a remarkable engine
for economic growth.

Suppose our atoms somehow do figure out that they are in Nevada and can temporarily stop obeying
the Schrodinger equation. Now a part of the quantum state during the measurement ends up on the wrong
side of the outcome and therefore has to suffer a shameful “collapse”. How exactly is this erasure of their
existence supposed to happen?

And finally, let us talk about macroscopic superpositions. We experimentally know that we can place
atoms and molecules in superposition. We also know that a superconductor and a superfluid are quantum
systems where electrons and nuclei are in macroscopic spatial superpositions. What is it that differentiates
these superpositions from say a supposedly disallowed superposition such as a human being ending up in
two places at the same time?

I think it is clear that the standard measurement postulates that we find in textbooks leave much to be
desired. That is a polite euphemism and I have never been accused of politeness. So let me be blunt. It is
pure nonsense.

3 Measurement from Schrodinger

I have just rudely proclaimed that the “measurement” postulates of quantum mechanics are “pure nonsense”.
Yet, they pretty obviously describe what an experimentalist sees when a measurement is performed. How
am I going to explain that? The purpose of this section is the following: I am going to show that using
only the deterministic Schrodinger equation and making one other assumption, I am going to explain all of
the phenomenology of measurement. To do this, I am going to force you to accept that you (or, indeed, all
objects) are made of atoms and thus subject to the rules of quantum mechanics. The main assumption I am
going to make is that the Hamiltonians that we have in the world are local. What do we mean by a local
Hamiltonian, or indeed a local operator? This terminology emerges from quantum field theory and it is tied
to causality. In quantum field theory, the operators in the Hamiltonian are field operators and these are
functions of position. So for example, if you had a scalar field theory, the Hamiltonian contains terms of the
form

∫
d3xφ (x)

n
where φ (x) is the field operator of the scalar field. The statement that the Hamiltonian is

local is the statement that in the operator φ (x)
n
, all the operators are evaluated at the same point x. We

do not have operators of the form φ (x1)φ (x2) with x1 6= x2 in the Hamiltonian. What this means is that
different physical systems can interact only if their wave-functions have spatial overlap and further that the
interactions occur at definite points in space. It is not possible for a state at the point x1 to influence a state
at the point x2 unless something physically communicates between x1 and x2. With this assumption, I can
show how the phenomenology of measurement flows out of the Schrodinger equation. Let me list out the
phenomenology that I am planning on explaining - this way you can check if I am being honest and indeed,
if you think I am missing something, you can point it out:

1. How does measurement result in the phenomenology of the “collapse” of the wave-function?

2. Why does measurement seem to produce probability even though the Schrodinger equation is deter-
ministic?
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3. If the Schrodinger equation is all there is, I should be allowed to have macroscopic superpositions.
Why am I thus not able to “see” such macroscopic superpositions?

4. There is no Born rule in the Schrodinger equation - where does that come from?

To show all this, I will pretend to be a fancy math type and prove a couple of lemmas. A properly
trained lemma prover starts with some axioms and I would like to pretend that I am one. I will thus assume
the one very important axiom that I have already confessed that I need - namely, I will assume that the
Hamiltonians that we have in the world are local. This is an extremely important axiom. You will see that
the correct way to think about measurement is that measurement is simply an interaction between different
physical systems. The kinds of interactions that exist in the world therefore limit what kinds of outcomes
one can get from a measurement. So when you think about measurements on your own and come up with
some question like “Why can I not see weird phenomenon X allowed by linear quantum mechanics?”, you
should answer that question by asking, “Ok, if I want to see weird phenomenon X, what kind of Hamiltonian
would I need? Is this Hamiltonian possible, given locality?”.

The first lemma I will prove concerns the ease of orthogonality of the states of macroscopic bodies.
Suppose we have a macroscopic system composed of N individual particles. In a world where Hamiltonians
are local, there are just nearest neighbor interactions between these individual particles. This implies there
isnt long range entanglement in the system3. In the absence of long range entanglement, the macroscopic
quantum state |Ψ〉 of the system is simply a product state of the form |Ψ〉 = Πi|Ψi〉 where |Ψi〉 is the
quantum state of the ith particle. Let us now look at quantum states |Ψ〉 = Πi|Ψi〉 and |Φ〉 = Πi|Φi〉 of
this system. Consider transition matrix elements of the form 〈Φ|HI |Ψ〉 where HI is some local operator.
Since the operator HI is local, it can be expressed as HI =

∑
iOi where Oi is the operator acting on

the ith particle and it is the identity on the rest of the system. The inner product 〈Φ|HI |Ψ〉 is equal to∑
i (Πi6=j〈Φj |Ψj〉) 〈Φi|Oi|Ψi〉. Now suppose I even gave you two states where for all the particles, we had nice

big overlaps - that is 〈Φj |Ψj〉 u 1 for all j. Even so, the sum
∑
i (Πi 6=j〈Φj |Ψj〉) 〈Φi|Oi|Ψi〉 is approximately of

the form
∑
i (〈Φj |Ψj〉)N−1 〈Φi|Oi|Ψi〉. But, for large N , (〈Φj |Ψj〉)N−1 u 0. Moreover, if some of the states

in |Ψ〉 = Πi|Ψi〉 and |Φ〉 = Πi|Φi〉 actually happened to be orthogonal to each other, that is, if for some j,
〈Φj |Ψj〉 = 0, then for all but a small number of states, the terms (Πi 6=j〈Φj |Ψj〉) 〈Φi|Oi|Ψi〉 would vanish,
vastly suppressing the inner product. Notice how easy it is for this latter condition to be satisfied. If there
was a macroscopic system and it was interacting with a gas molecule, all you need is for the gas molecule to
scatter off this macroscopic body. Upon scattering, the macroscopic body becomes entangled with different
scattering directions of the scattered gas, which are all orthogonal to each other. As a consequence, this
inner product will vanish! Thus, we have proven our first lemma, namely, the transition matrix elements
〈Φ|HI |Ψ〉 of the vast majority of quantum states |Φ〉 and |Ψ〉 of a macroscopic system when evaluated on
a local operator HI is basically zero. Let us call this the Lemma of the Vanishing Inner Product, or the
VIP4 Lemma. This lemma will be important in describing the phenomenology of the “collapse” of the
wave-function.

The second lemma that I will now prove concerns the nature of the quantum states that arise in a world
where some specific quantum system interacts with a large number of particles. For example, suppose we
had a large number of spins. We know that each spin sources a magnetic field. The collective magnetic field
sourced by all these spins is some quantum state of the electromagnetic field. What kind of quantum state
is it? The answer to this question are states called “Coherent States”. You might have encountered them
in your days as a quantum infant when the textbooks make you solve for states of “minimum uncertainty”
or “states of well defined phase” for a quantum harmonic oscillator. Textbooks usually treat these states
as curious parts of the Hilbert space of a harmonic oscillator. However, they are highly relevant to our
macroscopic world. Why is a weird state of the Harmonic oscillator relevant for the macroscopic world?
This is because quantum field theory describes the world - the usual single particle quantum mechanics that
we learn is a limit of quantum field theory. Field theory is naturally constructed from a basis of harmonic

3In strongly coupled systems, it is possible to obtain long range entanglement, especially for the ground states of such
systems. Those systems do exhibit unusual quantum properties. But, for even such systems, their typical state at normal
temperatures does not exhibit long range entanglement. My interest in this note is to discuss how our classical experience of
the world arises from the typical quantum states we find in our world - as opposed to the highly quantum behavior of particular
states.

4Very Important Point
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oscillator states and thus the coherent states of the harmonic oscillator can also describe important states
of quantum fields. Now these coherent states have an extremely important property - they are completely
described by the expectation values 〈Ψc|Â|Ψc〉 and 〈Ψc|Π̂A|Ψc〉 where Â and Π̂A are the field and its conjugate
momentum operators respectively. The fact that the quantum states of the systems of interest (such as the
electromagnetic field) will be coherent states when they are sourced by a number of interactions is going to
be relevant to understanding the origin of the Born rule - the connection is going to come from the fact that
these coherent states are specified simply by their expectation values on the appropriate operators. Let us
now see why our quantum systems end up in these coherent states.

To figure out what quantum state a physical system will end up in, all we need to do is to be good
obedient kids and solve the Schrodinger equation. So given a set of spins, if we want to figure out the state
of the electromagnetic field produced by these spins, all we need to do is to put in the Hamiltonian of QED
which contains the term

∫
d3xΨ̄γµΨAµ and take the incoming quantum state to be a state of a large number

of spins and solve the Schrodinger equation. One can do this using standard Feynman diagram tricks, where
one adds contributions coming from a number of spins. As a virtue of soft-photon theorems, one can then
show that the final state produced by these spins is a coherent state of the electromagnetic field [1].

Incidentally, coherent states are not limited solely to electromagnetism. Suppose we had a macroscopic
harmonic oscillator that was getting rung up due to external interactions - for example, we could think of a
LC resonator in which a current gets generated due to the passage of electrons or spins next to the resonator.
The leading order coupling between the charges in the LC resonator and the external interactions is some
linear drive of the form q̂F (t) where F (t) is the external driving term (coming from the transit of electrons
or spins) and q̂ is the operator controlling the charge degree of freedom in the resonator. One can show that
when this oscillator is rung up, the state of the oscillator produced by this driving is also a coherent state of
the LC resonator.

Ultimately, the math that proves the above results is applicable to any bosonic degree of freedom that is
being excited by leading order interactions. I will call this lemma “Coherent State Dominance” to highlight
the generic nature of coherent states in describing quantum systems that interact with a large number of
particles.

3.1 The Phenomenology of Measurement

In this section, I want to describe how I, a fully biological organism, will experience the outcome of a
measurement process. To be concrete, let us simply discuss the phenomenology of measurement in the
context of the Stern Gerlach apparatus wherein I send various spins in the basis |U〉 and |D〉 (spins up and
down along the z axis) and see what happens when I “measure” them. Since I need to describe what I “see”,
I have to provide a physical description of how I am physically able to see and react to what I see. Now
this sounds like we need biology - but my knowledge of biology is rather poor5. So instead of real biology,
we will do physicist’s biology - that is, we will make up a toy model which should morally describe the way
things actually work6.

So here is the toy model. My brain is made of a large number of registers whose purpose is to record
the outcome of spin measurements that I “see”. For a particular register, before that register has seen any
spin, it is in an initial quantum state |0〉. So if my brain was to only have the patience to see three spins,
the initial state of my brain, before I have seen any spins will be |000〉. Next, when I see the state |U〉, the
register |0〉 evolves to |1〉, and when I see the state |D〉, the register |0〉 evolves to |2〉. So for example, if
I saw the first spin to be |U〉, the second also to be |U〉 and the third to be |D〉, the registers in my brain
would be |112〉. Or if I have so far only seen the first spin and it is |D〉 and I haven’t seen the other spins, the
registers would be in the state |200〉. Now mind you, the rest of my body interacts with these spin registers.
So if my spin register is |112〉 and the Hamiltonian of my brain was such that when the spin registers go from
|000〉 to |112〉, I will go and play cricket, that is exactly what my biological being will do. You are about to
complain that while I have told you what the spin registers are doing, I haven’t yet described what I mean

5I was forced to take a Biology class at my undergraduate institution. I put this off till the very end of my time there and I
eventually took it during the final quarter of my senior year. Due to infection by an advanced case of senioritis and the desire
to explore Southern California, I ignored this class and graduated with a Gentleman’s C+, the bare minimum necessary to
graduate. I am forever thankful to my instructor Prof. Henry Lester for this gesture of kindness.

6A genuine physicist would disbelieve any claims from biologists that are contrary to the results obtained from this toy
model.
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by “seeing”. Here is the toy model for “seeing” - this is simply an interaction Hamiltonian HS between the
registers of your brain and the spins which accomplishes the following time evolution:

e−iHsT |U〉|0〉 → |U〉|1〉 (1)

e−iHsT |D〉|0〉 → |D〉|2〉 (2)

Given this Hamiltonian, let us see how the brain responds if it was given a number of spins all of them
in the state |U〉. The answer is pretty simple. We will get:

e−iHsT |UU . . . U〉|00 . . . 0〉 → |UU . . . U〉|11 . . . 1〉 (3)

Now, in addition to these spin registers, I am also going to assume that there is a predictivity circuit Ck
that functions in your brain - the job of this predictivity circuit Ck is to interact with the first k − 1 spin
registers of your brain and see if it can guess what the next spin will be. If the guess is right, the predictivity
circuit outputs a signal |NP 〉 saying the world is not probabilistic. If the guess is wrong, the circuit outputs
a signal |P 〉 saying the world is probabilistic. Let us apply this circuit Ck on the state of the brain we have
obtained when we sent in a bunch of |U〉 states to the brain. The answer is simple - we get:

Ck|UU . . . U〉|11 . . . 1〉 → |UU . . . U〉|11 . . . 1〉|NP 〉 (4)

Thus, in this state, we see that there is no probability in quantum mechanics - we are getting completely
deterministic results. In the parlance of the Official Postulates of Quantum Mechanics, this is the statement
that the state |U〉 is an eigenstate of the operator being measured and thus one gets definite results.

That was the easy part where there is no wavefunction “collapse”. Let us now see how we get that bizarre
phenomenon from this simple toy model.

3.1.1 Wave-function Collapse:

To see wave-function “collapse”, let us subject my brain to the spin state α|U〉 + β|D〉. The interaction
Hamiltonian between the spins and the registers is still HS . Since time evolution is linear, quantum mechanics
robustly and easily predicts the answer. We have:

e−iHsT | (α|U〉+ β|D〉) |0〉 → α|U〉|1〉+ β|D〉|2〉 (5)

Notice that the final quantum state is NOT |U〉|1〉 OR |D〉|2〉. That would not be linear quantum
mechanics. Rather it is the superposition of the two. What does this state mean? We initially started with a
nice product state (α|U〉+ β|D〉) |0〉 which had a sensible interpretation - there is a spin state (α|U〉+ β|D〉)
and a separate state |0〉 which represents the quantum state of my brain. With a product state, the spin and
my brain are factorized and one can ask questions such as “what is the state of my brain’”, independent of
the spin. But, due to linearity of quantum mechanics, the interaction has resulted in producing an entangled
state α|U〉|1〉+β|D〉|2〉. In the entangled state, one cannot ask the question “what is the state of my brain”
independent of the spin. The whole point of entanglement is that the quantum state of my brain is now
correlated with the spin. So what we have is a bizarre state where the quantum state of my brain is entangled
with the quantum states |U〉 and |D〉 of the spin.

Let us look at the time evolution of the quantum state α|U〉|1〉 + β|D〉|2〉. Now in general, since this
quantum state is in a superposition, one would expect interference between these states. It would thus
seem that one cannot solely focus on the time evolution of just the state |U〉|1〉 or the state |D〉|2〉. But,
for interference terms to matter, the Hamiltonian of the system must be such that the transition matrix
elements 〈U |〈1|H|2〉|D〉 are non-zero. But, since H is a local Hamiltonian and I have a macroscopic brain7,
by the VIP lemma, this inner product is zero. This means that if we want to look at the time evolution of
the quantum state α|U〉|1〉+ β|D〉|2〉, we can simply time evolve the two states independently of each other.

This implies that the time evolution of α|U〉|1〉+β|D〉|2〉 is equivalent to the time evolution of two distinct
quantum states |U〉|1〉 and |D〉|2〉, even though the full quantum state is in fact the superposition of the

7There is much pleasure in writing papers when one gets to talk about the size of one’s brain.
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two. The quantum state |U〉|1〉 is a factorized state - it is the state where the spin is up and my brain’s
spin register has “seen” that the spin is up. The full quantum state also contains the state |D〉|2〉 where the
spin is down and my brain’s spin register has “seen” that the spin is down. Since these two states evolve
independently of each other, if the Hamiltonian of my brain was such that the state |U〉|1〉 would time evolve
into the rest of my body going to play cricket, than that is how that state will evolve. And if the state |D〉|2〉
meant that I would go get Indian food for dinner8, then that is what will happen. So what we have is:

e−iHsT | (α|U〉+ β|D〉) |0〉 → α|U〉|1〉+ β|D〉|2〉 → α|U〉|SR plays cricket〉+ β|D〉|SR eats Indian Food〉 (6)

with these states subsequently evolving independently of each other. Now since the state |U〉|1〉 can ignore the
existence of |D〉|2〉 in its subsequent evolution, this state will simply say that the wave-function “collapsed”
to |U〉|1〉. But of course, this is simply a highly effective description of the system which holds in the limit
〈U |〈1|H|2〉|D〉 = 0. If by some hook or crook, this inner product becomes non-zero, the “collapse” would no
longer be true and the two quantum states will influence each other’s subsequent behavior. This part of the
description of measurement where there is effective wave-function collapse is typically called “decoherence”.
So when you hear people say “doesn’t decoherence describe measurement”, this is what they mean and they
are correct.

3.1.2 Probability from Determinism:

Let me now show how the deterministic Schrodinger equation yields the perception of probability. Notice
that the time evolution that produced (5) is deterministic - there is no doubt that this is the final state
produced by the Schrodinger equation. To see probability, let us observe a second spin that is also in the
quantum state α|U〉 + β|D〉. We will again use the same Hamiltonian Hs to do the time evolution of the
system. The Schrodinger equation then predicts:

e−iHsT | (α|U〉+ β|D〉) (α|U〉|10〉+ β|D〉|20〉)→ α2|UU〉|11〉+αβ|UD〉|12〉+βα|DU〉|21〉+β2|DD〉|22〉 (7)

Here I have kept track of the fact that I have already interacted with the first spin and thus the spin registers
in my brain for that interaction have already evolved into their respective states. The spin register for the
second spin is initially in the state |0〉 and that gets updated as a result of this interaction. Once again,
this is a deterministic result. But, due to decoherence, we know that the states |UU〉|11〉, |UD〉|12〉 etc.
evolve independently of each other. And of course, each of these states comes equipped with the rest of the
machinery of my brain, including the predictivity circuit Ck. Suppose the quantum state |UD〉|12〉 invokes
its predictivity circuit C2. This circuit is supposed to look at the state of the first spin register and see if it
can guess the next one. But, for the state |12〉, knowing that the first spin register is in state |1〉 does not tell
you the state of the second spin register. If I now interact with a large number of spins, the quantum states
of my brain will be various sequences like |121122 . . . 〉 where if that state runs the predictivity circuit Ck on
it, knowing the values of the first k− 1 registers is no guarantee that the circuit can predict the value of the
kth register. The predictivity circuit will thus say that the outcomes of spin measurements is probabilistic.
We thus see how the experience of probability has emerged from the deterministic Schrodinger equation.
The deterministic time evolution of the system produced a well defined final state and in this final state all
the outcomes of the interaction occurred. However, as a result of decoherence, the different states (outcomes
of the interaction) do not influence each other and thus each state evolves effectively with a probabilistic
description of the outcome of measurement.

3.1.3 Why Can’t we “see” Macroscopic Superpositions?

Given that linear quantum mechanics robustly predicts the existence of superpositions and the fact that
quantum mechanics claims it can be applied to systems of any size, why are we not able to “see” macroscopic
superpositions? In other words, everybody in this planet believes that there is a state of the universe where
Surjeet Rajendran is sitting on his LazBoy in his house. This nice quantum state is a solution to the

8More likely than me playing cricket these days
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Schrodinger equation. There is also another solution to the Schrodinger equation where Surjeet Rajendran
is sitting on his LazBoy in his office. The linearity of the Schrodinger equation implies that the superposition
of these two states of Surjeet Rajendran is also a solution to the Schrodinger equation and is thus an allowed
state of quantum mechanics. If this is the case and if we are able to “see” this state of Surjeet Rajendran,
then all of these meandering arguments about quantum mechanics and its interpretations would be over.
We would just know the answer. Why is this difficult, or in fact, nearly impossible within linear quantum
mechanics?

To answer this question, let us look at the example of the spin where there is no doubt that there are
superpositions. For example, when we are given the spin state α|U〉 + β|D〉, if we interacted with it using
the Hamiltonian Hs like we had been doing, the time evolution always gives the complicated entangled state
α|U〉|1〉+β|D〉|2〉. In this state, there is always probability involved in the effective description of the system
and in fact, as we have seen, after the interaction, due to decoherence, the spin states evolve as though the
wave-function has “collapsed”. The states of my brain are only able to see the states |U〉 or |D〉 but not
the superposition α|U〉|1〉 + β|D〉|2〉. But, for spins, this issue is easily rectified. The reason why we are
only able to see the states |U〉 or |D〉 is because our interaction Hamiltonian Hs was of the form (1) and
(2). A reasonable form of Hs that would give such a time evolution is a magnetic field oriented along the
z direction, a pixellated screen which lights up when the spin hits the screen, photon receptors in my eye
that get triggered when light from the screen hits my eye and my spin register changing as a result of this
trigger. Now if I want to “see” the state α|U〉|1〉 + β|D〉|2〉 what I want is a new interaction Hamiltonian
Hn of the form:

e−iHnT (α|U〉+ β|D〉) |0〉 → (α|U〉+ β|D〉) |1〉 (8)

e−iHnT (−β∗|U〉+ α∗|D〉) |0〉 → (−β∗|U〉+ α∗|D〉) |2〉 (9)

This interaction Hamiltonian Hn is easy to create - all we need to do is to orient our magnetic field along the
direction (α, β) in the Bloch sphere and then use the rest of the apparatus (screen, eyes and brain) as is. The
reason why this is easy to do is precisely because the spin is a local object and there are local interactions
between the spin and a magnetic field allowing us to create Hn. With this understanding, let us now answer
the question about “seeing” Surjeet Rajendran. Let us consider two states of Surjeet Rajendran |SRH〉 and
|SRO〉 corresponding to me being in my home and office respectively. Why is everyone able to see me in my
home and in my office? That is because there is an interaction Hamiltonian HSR between the atoms in my
body and your brain (I will abuse notation and use the states |0〉, |1〉, |2〉 to describe states of your brain as
well) which permits the time evolution:

e−iHSRT |SRH〉|0〉 → |SRH〉|1〉 (10)

e−iHSRT |SRO〉|0〉 → |SRO〉|2〉 (11)

Such an interaction Hamiltonian clearly exists because the atoms in my body are able to emit (or reflect)
light and this light can go into the photon receptors of your eyes. These are all local operators. Now to
“see” Surjeet Rajendran in a superposition of being in my home and in my office, what you need is a new
interaction Hamiltonian HSP which permits the time evolution:

e−iHSPT (α|SRH〉+ β|SRO〉) |0〉 → (α|SRH〉+ β|SRO〉) |1〉 (12)

e−iHSPT (−β∗|SRH〉+ α∗|SRO〉) |0〉 → (−β∗|SRH〉+ α∗|SRO〉) |2〉 (13)

Does such a Hamiltonian HSP exist? If my axioms only involved linear quantum mechanics, one can
indeed construct such an operator. But the key point is that in addition to linear quantum mechanics, I
am restricting the kinds of operators that exist in the world to local operators. That is, physical systems
need overlap at the same spatial point in order to interact - without such overlap, there is no interaction.
The point about the operator HSP above is that it needs to simultaneously know about the quantum states
|SRO〉 and |SRH〉 which are two quantum states localized at two very different locations - any HSP that is
able to act on both these states simultaneously is a non-local operator. Our requirement of locality forbids
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the existence of such an operator and thus we do not have interaction Hamiltonians of the form HSP that
would allow us to see Surjeet Rajendran at two different locations at the same time.

3.1.4 The Emergence of the Born Rule:

Finally, let us now see how the Born rule emerges from this description. The Born rule is the statement
that when the quantum state is of the form α|U〉+ β|D〉, then when we measure the spins in the basis |U〉
and |D〉, the probability that the spin appears as |U〉 is |α|2 and the probability that it appears as |D〉 is
|β|2. Now probability is of course a quantity that makes sense only in the limit of a large number of spins
being measured. That is, we should measure N spins and count the number of times we got |U〉. In the
limit of large N , the ratio of the number of measurements with |U〉 over the total number of measurements
approaches |α|2.

It will turn out that the above definition of the Born rule is not quite true in quantum mechanics. We
will find that the Born rule emerges when the measurement apparatus has some non-zero resolution so that
it is not sensitive enough to resolve the outcome of individual spins but is rather sensitive to the outcomes
of a collection of them. Of course, nothing stops us from coming up with a measurement apparatus which
is in fact sensitive to individual spins - in this case we will find that there will be outcomes produced by the
measurement that do not experience the Born rule. But, in the limit of large N, the set of such quantum
states where the Born rule is violated will be a set of measure zero.

To see how this works, let us begin with a simpler measurement protocol where we do not have sensitivity
to resolve the outcomes of individual spins, but can see their collective coarse-grained effects. Let us take
N spins, each in the state α|U〉 + β|D〉. We allow the states to go through a magnetic field oriented in
the z direction because of which the spins separate in physical space, with the states |U〉 ending up at the
spatial point |T 〉 and the states |D〉 ending up at the spatial point |B〉. We send all the N spins through
this magnetic field and obtain a final state. We then put a SQUID magnetometer around this entire system
and we look at the current in the SQUID, thus measuring the total magnetic field of the spin states. What
magnetic field will we see?

Now each spin term evolves as:

α|U〉+ β|D〉 → α|U〉|T 〉+ β|D〉|B〉 (14)

When I send in N spins, the final state is of the form:

(α|U〉+ β|D〉)N → αN |UU . . . U〉|TT . . . T 〉+ αN−1β|U . . . UD〉|T . . . TB〉+ . . . (15)

In this expression, there are
(
N
k

)
terms that have the coefficient αkβN−k with k |U〉 spins at positions

|T 〉 and N − k |D〉 spins at positions |B〉. Let us write this quantum state in the symbolic form:

|Ψ〉 u
∑
k

(
N

k

)
αkβN−k|U . . . U︸ ︷︷ ︸

k

〉|D . . .D︸ ︷︷ ︸
N−k

〉|T . . . T︸ ︷︷ ︸
k

〉|B . . . B︸ ︷︷ ︸
N−k

〉 (16)

Even though I wrote this in the above manner, the u sign symbolizes the fact that this is not the strict
superposition - I have clubbed in all the states that have k |U〉 together as though they were all the same
state - but this is not true. The order does matter and this way of writing the state is simply a way of
gathering all the spins together. Now you might be tempted to look at the above result and see hints of the
binomial probability distribution show up there. But this is wrong - first, this would give the probability
as α and β - which we know is not correct. The reason why the binomial probability distribution does not
arise here is because the α and β are complex, instead of being non negative real numbers.

Now given this final state for the spins, what we are doing is exposing these spins to the SQUID. The
Hamiltonian of the SQUID is such that the current in the SQUID is coupled to the magnetic field produced by
these spins. In the limit of large N , as a result of Coherent State Dominance, the state of the electromagnetic
field sourced by these spins is a coherent state. This coherent state is completely characterized by the
expectation value 〈Ψ| ~A|Ψ〉. This expectation value is:

〈Ψ| ~A|Ψ〉 =
∑
k

(
N

k

)
|α|2k|β|2(N−k) ~A ((k, T ) , (N − k,B)) (17)
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where ~A ((k, T ) , (N − k,B)) is the classical vector potential of a system where k spins are at the position T
and N −k are at the position B. This expectation value clearly is the binomial distribution with probability
|α|2 for the spin to be at T and |β|2 for it to be at B.

The SQUID will thus respond as though it was seeing the magnetic field of a classical probability distri-
bution where the probability of getting spin |U〉 was |α|2 and the probability of seeing spin |D〉 was |β|2. We
thus see where the Born rule emerges - it comes from the fact that the state of the counting device we use,
namely the state of the electromagnetic field in this example, is in a coherent state and that this coherent
state is completely characterized by its expectation value.

Notice however that the SQUID simply interacts with the overall magnetic field produced by this collec-
tion of spins. This is thus a coarse-grained measurement of the full distribution of spins. The SQUID itself
is not entangled with any particular state that is produced in the massive superposition (15). Let us now
take the opposite limit. What if we had used a measurement apparatus where we were able to resolve each
individual spin state produced in (17). For example, we put a screen at the locations T and B and when
the spin hits T , the screen emits red light and when the spin hits B, the screen emits blue light. I then see
this light and thus I am entangled with the specific outcome. In this case, the superposition we produce is
of the form:

|Ψ〉 = αN |U . . . U〉|1 . . . 1〉+ αN−1β|U . . . UD〉|1 . . . 12〉+ · · ·+ βN |D . . .D〉|2 . . . 2〉 (18)

Now each of these states evolves independently of the others. How do we see probability in this specific
outcome? In a specific outcome, the naive notion of probability, where we count the number of spins that
are |U〉 and take the ratio, is a counterfactual question. That is, we get some answer for this ratio and in
the limit of large N , we believe that we are not lucky to have obtained this ratio. In other words, if we look
at the distribution of outcomes, then in most of this distribution, the ratio would be the true probability.
But, in linear quantum mechanics, there is no way for us to “talk” to the rest of the distribution and verify
this counterfactual claim.

If we are not able to “talk” to the rest of the distribution, what do we have instead? Notice that we now
have something quite odd. The deterministic measurement process produces all the possible outcomes of the
measurement. It thus produces extreme states of the form |U . . . U〉|1 . . . 1〉 and |D . . .D〉|2 . . . 2〉 in which
my brain only sees either |U〉 or |D〉 even though the spin that I sent was of the form α|U〉+ β|D〉, in which
case, I should have expected to see a distribution of spins. These states that are produced as a result of this
measurement procedure will thus not experience the Born rule. There are of course plenty of states where
the Born rule will in fact also be observed to be true. In this context, the appropriate question to ask is the
measure of the set of states where the Born rule is violated. On the Hilbert space, the natural measure to
use is the inner product measure - and this yields the same formula as the expectation value, wherein we
see that these extreme states are weighed down by the coefficients |α|2N and |β|2N respectively. In the limit
of large N, one can again show that on the measure in Hilbert space, the set of all states that deviate away
from the Born rule is zero [2].

Given these two very different possibilities, let us talk about what we in fact experimentally do when
we are trying to measure probabilities in quantum experiments. The devices we use are rarely sensitive to
the outcomes of each individual particle we are measuring. What we usually do is to put a device that
aggregates a bunch of outcomes and yields a result that is coarse grained at that level. So for example, in
the case of spins that hit a screen, even though single photon detectors do exist, the detectors we typically
use require us to collect a bunch of photons before they respond. In this case, what we are effectively doing
is taking our set of N spins, dividing them into blocks of size M each. Now in each block, we are performing
a coarse grained measurement, and then we can compare different coarse grained measurements. The Born
rule will reappear for this coarse grained measurement (it clearly does when we use a SQUID - see below
for the argument for why it would also appear if we used a different device). One can then compare the
outcomes of different coarse-grained measurements many times to see that the Born rule continues to hold.
The important realization that we get from this discussion is that the experimental experience of the Born
rule is tied to the fact that the measurements we perform typically involve an element of coarse graining -
if we had truly fine grained measurements down to the single particle level, there will be quantum states, of
vanishing measure, where the Born rule will never be realized.

This brings up the key point. Are we required to use a SQUID that couples to the electromagnetic field
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in order to see the Born rule? After all, that is not what we usually do9. But, no matter what, we need
to have a physical counting apparatus that is able to go into some well defined state when it encounters a
number of spins. This apparatus contains a degree of freedom X which is coupled to the spins. X needs to
be a bosonic degree of freedom since it needs to be put into high occupation number states so that it can
count a large number of spins. To leading order, X is a harmonic oscillator and its leading interactions with
the spins is going to be via a linear driving term. Due to Coherent State Dominance, we will once again
find that X will end up in a coherent state, at which point, it will be described by the expectation value
〈Ψ|X|Ψ〉, resulting in the emergence of the Born rule.

Now, in my arguments, I have made heavy use of electromagnetism and harmonic oscillators. Is the Born
rule specific to these interactions, or is it more general? Now, the fact of the matter is, electromagnetism and
harmonic oscillators pretty much describe every physical system we actually care about. So very reasonably,
this covers all physical cases of interest. But, I am an academic and it is interesting to ask academic questions
about what might happen for a different system. While it is difficult to prove useful results about generic
systems that aren’t sufficiently defined, one can ask what sorts of features a generic system needs to have
so that it is a good counting device and see if those aspects also make it susceptible to the key aspect of
Coherent State Dominance, namely, the fact that the response of the counting system is determined by the
expectation value of an appropriate operator. Now, a good counting apparatus needs to be able to retain
information about whatever it is counting even when it is subject to a bunch of environmental disturbances.
An easy way for a system to resist the environment and maintain information is by being heavy (or containing
a macroscopic number of particles). For example, our counting apparatus could be the position of some kind
of heavy (compared to atomic scales, but still small compared to macroscopic masses) particle. In a case
like this, the de-Broglie wave-length of the particle will be small. In this case, very reasonably, the spread
of the particle’s wave-function can be significantly smaller than the length scale over which the potential
V (x) of the particle changes. If we now consider the quantum mechanics of this system interacting with a
bunch of other quantum particles, due to Ehrenfest’s theorem, we know that the expectation values of various
quantum operators automatically obey the corresponding classical equations of motion. When the de Broglie
wavelength is smaller than the length scale of the variation of the potential, we can replace 〈Ψ|V (x̂) |Ψ〉 with
V (〈Ψ|x̂|Ψ〉) (similar replacements can also be performed for the derivatives of V (x)) and thus Ehrenfest’s
equations directly become equations for 〈Ψ|x̂|Ψ〉 sourced by the expectation values of the spins. When the
spread of the wave-function is small, the expectation value 〈Ψ|x̂|Ψ〉 is a representative of the state of the
system and this is the value that acts as the counting apparatus. This is of course the same kind of behavior
that we saw for coherent states.

4 Conclusions

I hope I have convinced you that quantum mechanics is in fact a complete theory without need for ad-hoc
measurement postulates that do not make any kind of logical sense. All one really needs is the Schrodinger
equation, coupled with the additional assumption that the Hamiltonians that exist in the world are local.
These two facts are sufficient to derive the phenomenology of measurement such as the “collapse” of the
wave-function, the emergence of probability from a deterministic time evolution10 and the fact that it is
difficult to observe superpositions of macroscopic bodies. Further, once we recognize that the measuring
apparatuses that we use to count the outcomes of measurement are in coherent states (or otherwise suitably
localized), we can also see how the probabilities that emerge in this deterministic evolution obey Born’s rule.

Notice how conservative this entire derivation is - I have only used the Schrodinger equation and I have
insisted that all atoms, including the ones that you are made of, are subject to the rules of quantum mechanics
and thus capable of being placed in entangled states. It is true that I had to make some informed toy models
about biology - and one may not like the fact that biological elements seem necessary to describe physics.
Indeed, the toy model of biology here is a mirage - you can replace that toy biological model with any kind
of macroscopic object or detector. All we are really asking is how a quantum system can get entangled

9My brain is sometimes nourished by biological squids, especially the deep fried and salty kind. But, as far as I know, even
though I have received multiple vaccinations in my lifetime, I do not believe that a SQUID was secretly implanted into my
brain.

10Einstein was in fact right - God does not play dice with the universe. We are just too decohered to see God’s master plan
of deterministic evolution
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with a macroscopic system. Once this entanglement has been created, the macroscopic system (whether
sentient or not) will effectively evolve as though there was wave-function “collapse”. Further, given that this
macroscopic system is going to be in some kind of coherent state in order to preserve its structure in the face
of environmental decoherence, the macroscopic system will react to the expectation value of the quantum
stimuli that it is subject to, exactly as described by the Born rule.

References

[1] W. M. Zhang, [arXiv:hep-th/9908117 [hep-th]].

[2] E. Farhi, J. Goldstone and S. Gutmann, Annals Phys. 192, 368 (1989) doi:10.1016/0003-4916(89)90141-3

12


