Quantum Physics

Andrei Gritsan Johns Hopkins University

July 25, 2022

Johns Hopkins University

Johns Hopkins University QuarkNet Physics Workshop

Quantum Physics: Spin and Magnetic Moment

• Spin = Intrinsic angular momentum of a particle (system)

Classically:
$$\overrightarrow{L} = \overrightarrow{r} \times \overrightarrow{p}$$
 $L = mrv$

Magnetic moment = current (I) x loop areas (A)

Quantum Physics: Stern–Gerlach experiment

Atom, outer electron interaction energy: $E = - \overrightarrow{\mu} \cdot B'$

$$F_{z} = \frac{\partial}{\partial z} (\overrightarrow{\mu} \cdot \overrightarrow{B}) = \mu_{z} \frac{\partial B_{z}}{\partial z}$$
$$\mu_{z} = g \times \frac{q}{2m} S_{z} \implies S_{z} = \pm \frac{\hbar}{2} \quad \text{electron}$$

Quantum Physics: Spin of Electron

electron
$$S_z = \pm \frac{\hbar}{2}$$
 quantization!
Planck's constant $\hbar = \frac{h}{-1} = 6.5821 \times 10^{-16} \text{ eV} \cdot s$

 2π

electron's spin

spin projection on axis z

$$S = \frac{\hbar}{2} \qquad \qquad S_z = \pm \frac{\hbar}{2}$$

Foundation of Quantum Physics!

Spin of Elementary Particles

• Until recently, all elementary particles were of two types:

Fermions (half-integer spin) occupy space (Fermi statistics: exclusion princ.) constitute matter (quarks, leptons)

$$S = 1\hbar$$

Bosons (integer spin) carry interactions (γ photons, g gluons, W^{\pm}, Z)

• One can create compose particles of any spin $S = \frac{N\hbar}{2}$, N = 0,1,2,..for example π^0 meson made of $q\bar{q}$ has S = 0but there was no elementary particle with no spin, until 2012...

Spin of the Higgs boson?

• Spin = 0

2012 (10 years!)

- The only known elementary particle with no spin !
 - how do we know it has no spin ?

Spin of the Higgs boson?

Spin of elementary particles

- Spin = 0 H boson (excitation of the vacuum field) • Spin = $\frac{\hbar}{2}$ $\left[e^{\pm}, \mu^{\pm}, \tau^{\pm}, \nu_e, \nu_\mu, \nu_\tau, \text{quarks...} \right]$ matter $\gamma, Z, W^+, W^-, g_1, g_2, g_3, g_4, g_5, g_6, g_7, g_8$ • Spin = \hbar interactions • Spin = $\frac{3\hbar}{2}$ Not known (may be supersymmetric particle, e.g. gravitino)
- Spin = $2\hbar$ Not discovered, expect graviton
- Arguments for higher Spin to be composite particles...

• July 4, 2022 Symposium at CERN to celebrate 10 years of H boson

- local JHU article on the topic

discovery

ÈRN

July 4, 2022 Symposium at CERN to celebrate 10 years of H boson

- local JHU article on the topic

June 14, 2012, CERN

July 4, 2022, CERN

July, 2022 Community Summer Study in Seattle ("Snowmass")

- Big questions and big facilities
 - next Higgs factory ???
- Followup to Snowmass 2001
 Snowmass 2013...

Back to Quantum Physics: Time Evolution

 $E \rightarrow i\hbar \frac{\partial}{\partial t}$

Non-relativistic energy expression:

Quantum prescription:

 $\overrightarrow{p} \rightarrow -i\hbar \overrightarrow{\nabla} = -i\hbar (\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z})$

 $E = \frac{p^2}{2m} + V$

Schrodinger equation, for a wave function $\psi(t, x, y, z)$

$$E\psi = \frac{\overrightarrow{p}^2}{2m}\psi + V\psi \qquad i\hbar\frac{\partial}{\partial t}\psi = -\frac{\hbar^2}{2m}\nabla^2\psi + V\psi$$

Andrei Gritsan, JHU

D(I) O(A) = I(I)

July 25, 2022

$\left(-\frac{1}{2\mu}\nabla^{2}_{Q_{\mu}} - \frac{1}{2\mu}\psi(r,\theta,\varphi)\right) = E\psi(r,\theta,\varphi)$ Hydrogen Atom

$$-\frac{\hbar^2}{2\mu}\left[\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial\psi}{\partial r}\right)+\frac{1}{r^2\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial\psi}{\partial\theta}\right)+\frac{1}{r^2\sin^2\theta}\frac{\partial^2\psi}{\partial\varphi^2}\right]-\frac{e^2}{4\pi\varepsilon_0r}\psi=E\psi$$

$$\begin{array}{l} \text{principal quantum } \mu \stackrel{*}{\underset{na_{0}}{\text{ma}}} \underbrace{ber: } & h-\pm \\ \frac{1}{2} \cdot \frac{1}{$$

projection of angular momentum: $m = -\ell, (-\ell + 1), ..., 0, ..., (\ell - 1), \ell$ $\rho = \frac{2r}{na_0^*}$

$$a^* = 4\pi \varepsilon_0 \hbar^2$$

Quantum Physics: Hydrogen Atom

$$\psi_{n,\ell,m}(r,\theta,\varphi) \propto R_{n,\ell}(r) Y_{\ell,m}(\theta,\varphi)$$
$$|m| \le \ell = 0, 1, 2, 3, \dots < n$$

$$E_n = -\frac{\hbar^2}{2ma_0} \frac{1}{n^2}$$
$$n = 1, 2, 3, \dots$$

Probability to find electron in (r, θ, φ)

 $|\psi_{n,\ell,m}(r,\theta,\varphi)|^2$ ground state $R_{1,0}(r) \propto e^{-r/a_0}$

$$\begin{split} Y_0^0(\theta,\varphi) &= \frac{1}{2}\sqrt{\frac{1}{\pi}} \\ Y_1^{-1}(\theta,\varphi) &= \frac{1}{2}\sqrt{\frac{3}{2\pi}}\sin\theta \, e^{-i\varphi} \\ Y_1^0(\theta,\varphi) &= \frac{1}{2}\sqrt{\frac{3}{\pi}}\cos\theta \\ Y_1^1(\theta,\varphi) &= \frac{-1}{2}\sqrt{\frac{3}{2\pi}}\sin\theta \, e^{i\varphi} \\ Y_2^{-2}(\theta,\varphi) &= \frac{1}{4}\sqrt{\frac{15}{2\pi}}\sin^2\theta \, e^{-2i\varphi} \\ Y_2^{-1}(\theta,\varphi) &= \frac{1}{2}\sqrt{\frac{15}{2\pi}}\sin\theta \, \cos\theta \, e^{-i\varphi} \\ Y_2^0(\theta,\varphi) &= \frac{1}{4}\sqrt{\frac{5}{\pi}} \left(3\cos^2\theta - 1\right) \\ Y_2^1(\theta,\varphi) &= \frac{-1}{2}\sqrt{\frac{15}{2\pi}}\sin\theta \, \cos\theta \, e^{i\varphi} \\ Y_2^2(\theta,\varphi) &= \frac{1}{4}\sqrt{\frac{15}{2\pi}}\sin^2\theta \, e^{2i\varphi} \end{split}$$

Atomic Physics

Quantum Physics: Atoms

- Particles (electrons) occupy the lowest energy states
- No two identical particles (electrons) may have the same set of quantum numbers (n, ℓ, m, s_z)

(Pauli exclusion principle)

$$|m| \le \ell = 0, 1, 2, 3, \dots < n$$
$$s_z = \pm \frac{\hbar}{2}$$

Shell
nameSubshell
max
electronsShell
max
electronsK1s22L2s22p6
$$2+6=8$$
2p6 $2+6=10$
=18M3p63d103d104s24p64d104f145s25p65d105f145g18July 25, 2022

Quantum Physics: Atoms

Periodic Table of Elements Showing Electron Shells

July 25, 2022

Atomic / Nuclear Physics

https://pdg.lbl.gov/2020/reviews/rpp2020-rev-periodic-table.pdf

1 IA																			18 VIIIA
1 H																			2 He
hydrogen	2												13	14	15	16	5	17	helium
1.008	IIA												IIIA	IVA	VA	VI/	4	VIIA	4.002602
3 Li	4 I	3e		חחח					T TN (T				5 B	6 C	[7	N 8	09	F	10 Ne
lithium	berylliu	m		PER	lodic	TABI		ГНЕЕ	LEME	IN TS			boron	carbon	nitrogen	oxyg	gen f	luorine	neon
6.94	9.01218	32											10.81	12.0107	14.007	15.9	99 18.	998403163	20.1797
11 Na	12 N	1g											13 Al	14 S	i 15	P 16	S 17	7 CI	18 Ar
sodium	magnesi	ım 3		4	5	6	7	8	9	10	11	12	aluminum	silicon	phosphoru	is sulf	ur o	chlorine	argon
22.98976928	24.305	5 IIIE		IVB	VB	VIB	VIIB		VIII		IB	IIB	26.9815385	28.085	30.97376199	32.0	06	35.45	39.948
19 K	20 (Ca 21	Sc	22 T	i 23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	e 33 A	s 34	Se 3	5 Br	36 Kr
potassium	calciun	n scandi	um	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	gallium	germanium	n arsenic	seleni	ium h	oromine	krypton
39.0983	40.078	3 44.955	908	47.867	50.9415	51.9961	54.938044	55.845	58.933195	58.6934	63.546	65.38	69.723	72.630	74.92159	95 78.9	71	79.904	83.798
37 Rb	38	Sr 39	Y	40 Zr	r 41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	151 S	b 52	Te 53	3 I	54 Xe
rubidium	strontiu	m yttriu	m	zirconium	niobium	molybdenum	technetium	ruthenium	rhodium	palladium	silver	cadmium	indium	$_{ m tin}$	antimon	y tellur	ium	iodine	xenon
85.4678	87.62	88.90	584	91.224	92.90637	95.95	(97.907212)	101.07	102.90550	106.42	107.8682	112.414	114.818	118.710	121.760) 127.	60 12	6.90447	131.293
55 Cs	56 E	3a 57–7	1	72 Hi	f 73 Ta	74 W	75 Re	76 Os	77 lr	78 Pt	79 Au	80 Hg	81 TI	82 Pb	63 E	3i 84	Po 8	5 At	86 Rn
caesium	bariun	1 LANT	HA-	hafnium	tantalum	tungsten	rhenium	osmium	iridium	platinum	gold	mercury	thallium	lead	bismuth	ı polon	ium a	statine	radon
132.90545196	137.32	7 NIDI	ES	178.49	180.94788	183.84	186.207	190.23	192.217	195.084	196.966569	200.592	204.38	207.2	208.9804	0 (208.98	3243) (20)9.98715)	(222.01758)
87 Fr	88 I	Ra 89–1	03	104 Ri	f 105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Nh	114 F	115 M	c 116	Lv 11	L7 Ts	118 Og
francium	radiun		DES	rutherford	. dubnium	seaborgium	bohrium	hassium	meitnerium	darmstadt.	roentgen.	copernicium	nihonium	flerovium	moscoviur	n livermo	rium te	nnessine	oganesson
(223.01974)	(226.025	41)	((267.12169)) (268.12567)	(269.12863)	(270.13336)	(269.13375)	(278.1563)	(281.1645)	(282.16912)	(285.17712)	(286.18221)	(289.19042	(290.1959	8) (293.2	0449 (2	94.2105)	(294.21392)
Tantha						<u> </u>	<i>ct</i> D					T I 66	D (77			-		() = (
Lantna	anide series	5/ La	a 58	Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Ei	u 64 (Jd 65	Ib 66	Dy 67	Ho 68	Er 69	Im	70	/b /1	Lu
501105		lanthanur		cerium	praseodym.	neodymium	promethium	samarium	europium	1 gadolini	ım terbiu	m dyspro	sium holm	nium erl	oium th	nulium	ytterbiu	m lute	tium
		138.9054	$i \mid 1$	40.116	140.90766	144.242	(144.91276)	150.36	151.964	157.25	b 158.92	535 162.5	00 164.9	3033 16	(.259 16	8.93422	1/3.05	4 1/4.	9008
Acti	inide	80 A	- 00		01 Po	02 11	03 Nn	04 Pu	Q5 Δm	06 C	m 07	Bk 08	Cf 00	Es 100	Fm 10	1 Md	102	103	l r
S	series	octinium		horium		JZ U	nontunium	plutonium			herkeli	um califori	ium oinsto	inium for			nobeliu		ncium

231.03588 238.02891 (237.04817) (244.06420) (243.06138) (247.07035) (247.07031) (251.07959) (252.08298) (257.09511) (258.09844) (259.10103) (262.10961)

(227.02775) 232.0377

Atomic Physics

- Particles (electrons) occupy the lowest energy states
- No two identical particles (electrons) may have the same set of quantum numbers (n, ℓ, m, s_z)

(Pauli exclusion principle)

$$|m| \le \ell = 0, 1, 2, 3, \dots < n$$

$$s_z = \pm \frac{\hbar}{2}$$

 $\psi_{n,\ell,m}(r,\theta,\varphi) \propto R_{n,\ell}(r) Y_{\ell,m}(\theta,\varphi)$

principal quantum number: n = 1, 2, 3, ...orbital angular momentum: $\ell = 0, 1, 2, 3, ... < n$ projection of angular momentum: $m = -\ell, (-\ell + 1), ..., 0, ..., (\ell - 1), \ell$

Shell name	Subshell name	Subshell max electrons	Shell max electrons	
К	15	2	2	← <i>H</i> , <i>He</i>
	28	2	0 0 0	
L	2p	6	2+6=8	
	3s	2		
М	3p	6	2 + 6 + 10 = 18	
	3d	10	_ 10	
	4s	2		
N	4p	6	2+6+	
IN	4d	10	= 32	
	4f	14		
	5s	2		
	5p	6	2+6+	
0	5d	10	10 + 14 +	
	5f	14	18 = 50	
	5g	18		July 25, 2022

Nuclear Physics

Nuclear binding energy

 $B(A, Z) = [Z(M_p + m_e) + (A - Z)M_n - M(A, Z)] \cdot c^2$

Abundance of the chemical elements on Earth

Stable nuclide (nuclear species)

Types of decay (weak force)

Types of decay (strong force)

Types of decay

Fission

Andrei Gritsan, JHU

July 25, 2022

Fission

Nuclear binding energy - key in understanding nuclear processes $B(A, Z) = [Z(M_p + m_e) + (A - Z)M_n - M(A, Z)] \cdot c^2$

Nuclear force - based on strong force, but works differently than binding force of quarks and baryons

Nuclear binding energy - key in understanding nuclear processes $B(A, Z) = [Z(M_p + m_e) + (A - Z)M_n - M(A, Z)] \cdot c^2$

strong force attraction and repulsion at shorter distances:

Nuclear Energy

Energy Sources

• Fossil fuel (current $\sim 86\%$)

petroleum, coal, natural gas

- energy from the Sun stored in the past
- limited supply 40–400 years, environmental concerns
- Renewable energy (current $\sim 7\%$)

sunlight, wind, hydro, biomass (&wood, waste),..

- one way or another, mostly convert present Sun energy
- Nuclear energy (current $\sim 7\%$)
 - uranium-235, plutonium-239 (fission)
 - supply 100's years (fission), safety concerns
 - there is also fusion, but need technology

Energy Source: Sun as a "Nuclear Reactor"

- Both fossil fuel and renewable energy mostly pass energy from the Sun (past or present)
 Sun – huge nuclear fusion reactor supply: billions of years, 1 hour flux on Earth = 1 year demand
- Challenge with renewable energy technological:

collect enough Sun light effectively convert and store collected energy examples: photosynthesis by green plants; solar power panels

beyond the scope of this discussion

Sun as a "Nuclear Reactor"

Stable nuclide (nuclear species)

Nuclear binding energy - key in understanding nuclear processes

$$B(A, Z) = [Z(M_p + m_e) + (A - Z)M_n - M(A, Z)] \cdot c^2$$

Sun as a "Nuclear Reactor"

Energy Source: Fuel

combustion

burn fuel (carbon)

 $CH_4 + 2 O_2 \rightarrow CO_2 + 2 H_2O + \text{energy}$ (methane) + (oxygen) \rightarrow (carbon dioxide) + (water)

• nuclear fission

 $n + {}^{235}U \rightarrow {}^{92}Kr + {}^{141}Ba + 3 \ n + \text{energy}$

• nuclear fusion

 $^{2}H + ^{3}H \rightarrow ^{4}He + n + energy$

antimatter annihilation

 $^{1}H^{+}$ (matter) + $^{1}H^{-}$ (antimatter) \rightarrow energy

science fiction (e.g. see Angels and Demons with Tom Hanks)

Nuclear Energy: Present

• Nuclear fission reactor

