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Quantum Physics: Spin and Magnetic Moment

Spin = Intrinsic angular momentum of a particle (system)

⃗L = ⃗r × ⃗pClassically: L = mrv

Magnetic moment = current (I) x loop areas (A)

⃗μ = I × ⃗A μ =
qv
2πr

πr2 = qrv/2

μ = g ×
q

2m
S g ≠ 1 in QM
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Quantum Physics: Stern–Gerlach experiment

E = − ⃗μ ⋅ ⃗BAtom, outer electron interaction energy: 

1922   (100 years!)

Fz =
∂
∂z

( ⃗μ ⋅ ⃗B ) = μz
∂Bz

∂z

μz = g ×
q

2m
Sz ⇒ Sz = ± ℏ

2
electron
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Quantum Physics: Spin of Electron

Sz = ± ℏ
2

electron

ℏ =
h

2π
= 6.5821 × 10−16 eV ⋅ sPlanck’s constant

quantization!

S =
ℏ
2

Sz = ± ℏ
2

electron’s spin spin projection on axis z

Foundation of Quantum Physics!
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Spin of Elementary Particles

S =
ℏ
2

July 25, 2022

S = 1ℏ

Fermions  (half-integer spin)

constitute matter (quarks, leptons)

Bosons (integer spin)
carry interactions (  photons,  gluons,  )γ g W±, Z

Until recently, all elementary particles were of two types: 

One can create compose particles of any spin  S =
Nℏ
2

, N = 0,1,2,..

for example  meson made of    has   π0 qq̄ S = 0

occupy space (Fermi statistics: exclusion princ.)

but there was no elementary particle with no spin, until 2012…
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Spin of the Higgs boson?

6

H

Spin = 0 
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The only known elementary particle with no spin !

2012   (10 years!)

— how do we know it has no spin ?
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(a) qq̄ LO (b) qq̄ NLO QCD (c) gg LO box (d) gg LO triange

FIG. 4: ZH sample diagrams for leading order qq̄ and gg initial states, including higher order contributions.

B. O↵-shell simulation of the H boson in electroweak production and a second scalar resonance

Similar to the gluon fusion process, we extend our previous calculation of vector boson fusion qq ! qq + H(!
V V ! 4f) and associated production qq ! V +H(! V V ! 4f), and allow the full kinematic range for m4f . The
SM implementation in MCFM [8] includes the s- and t-channel H boson amplitudes, the continuum background
amplitudes, and their interference, as illustrated in Fig. 3. We supplement the necessary contributions for the most
general anomalous coupling structure. In particular, this a↵ects the H boson amplitudes but also the triple and
quartic gauge boson couplings. We also add amplitudes for the intermediate states ZZ/Z�⇤/�⇤�⇤ in place of ZZ
in both decay and production with the most general anomalous coupling structure, which are not present in the
original MCFM implementation. It is interesting to note that the o↵-shell VBF process qq ! qq+H(! 4f) includes
contributions of the qq̄ ! V H(! 4f) process for the case of hadronic decays of the V boson. As in the case of
gluon fusion, we also allow the study of a second H-like resonance X with mass mX , width �X , and the same set of
couplings and decay modes.

C. Higher-order contributions to VH production

We calculate the NLO QCD corrections to the associated H boson production process qq̄ ! V H where V = Z,W, �,
shown in Fig. 4. We use standard techniques and implement the results in JHUGen, relying on the COLLIER [101]
loop integral library. This improves the physics simulation of previous studies at LO and allows demonstrating the
robustness of previous matrix element method studies. We also calculate the loop-induced gluon fusion contribution
gg ! ZH, which is parameterically of next-to-next-to-leading order but receives an enhancement from the large
gluon flux, making it numerically relevant for studies at NLO precision. In contrast to the qq̄ ! V H process which
is sensitive to HV V couplings, the gg ! ZH process is additionally sensitive to the Yukawa-type Hqq̄ couplings. In
both cases we allow for the most general CP-even and CP-odd couplings. Strong destructive interference between
triangle and box amplitudes in the SM leads to interesting physics e↵ects that enhance sensitivity to anomalous Htt̄
couplings, as we demonstrate in Section VIII.

D. Multidimensional likelihoods and machine learning

We extend the multivariate maximum likelihood fitting framework to describe the data in an optimal way and
provide the multi-parameter results in both the EFT and the generic approaches. The main challenge in this analysis
is the fast growth of both the number of observable dimensions and the number of contributing components in the
likelihood description of a single process with the increasing number of parameters of interest. We present a practical
approach to accommodate both challenges, while keeping the approach generic enough for further extensions. This
approach relies on the MC simulation, reweighting tools, and optimal observables constructed from matrix element
calculations. We extend the matrix element approach by incorporating the machine learning procedure to account for
parton shower and detector e↵ects when these e↵ects become sizable. Some of these techniques are illustrated with
examples below.

V. LHC EVENT KINEMATICS AND THE MATRIX ELEMENT TECHNIQUE

Kinematic distributions of particles produced in association with the H boson or in its decay are sensitive to the
quantum numbers and anomalous couplings of the H boson. In the 1 ! 4 process of the H ! V V ! 4f decay,
six observables ⌦decay = {✓1, ✓2,�,m1,m2,m4f} fully characterize kinematics of the decay products, while two other
angles ⌦prod = {✓⇤,�1} orient the decay frame with respect to the production axis, as described in Ref. [1] and
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Spin of the Higgs boson?
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Spin = 0 from observing H decay:  
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Spin of elementary particles
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Spin = 0 
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Spin =  
ℏ
2

Spin =  ℏ

Spin =  
3ℏ
2

Spin =  2ℏ

H boson 

quarks…e±, μ±, τ±, νe, νμ, ντ,

γ, Z, W+, W−, g1, g2, g3, g4, g5, g6, g7, g8

Not known

Not discovered, expect graviton 

matter

interactions

(excitation of the vacuum field)

(may be supersymmetric particle, e.g. gravitino)

Arguments for higher Spin to be composite particles…
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Two events in July
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July 4, 2022 Symposium at CERN to celebrate 10 years of H boson

— local JHU article on the topic

https://physics-astronomy.jhu.edu/2022/07/04/10-year-anniversary-of-the-discovery-of-the-higgs-boson/
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Two events in July

July 25, 2022

July 4, 2022 Symposium at CERN to celebrate 10 years of H boson

— local JHU article on the topic

June 14, 2012, CERN July 4, 2022, CERN

https://physics-astronomy.jhu.edu/2022/07/04/10-year-anniversary-of-the-discovery-of-the-higgs-boson/
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Two events in July
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Two events in July
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July, 2022 Community Summer Study in Seattle (“Snowmass”)

Big questions and big facilities

— next Higgs factory ???

Followup to Snowmass 2001
Snowmass 2013…
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Back to Quantum Physics: Time Evolution

E =
⃗p 2

2m
+ VNon-relativistic energy expression: 

Quantum prescription: E → iℏ
∂
∂t

⃗p → − iℏ ⃗∇ = − iℏ(
∂
∂x

,
∂
∂y

,
∂
∂z

)

Schrodinger equation, for a wave function   ψ(t, x, y, z)

Eψ =
⃗p 2

2m
ψ + Vψ iℏ

∂
∂t

ψ = −
ℏ2

2m
∇2ψ + Vψ
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Quantum Physics: Hydrogen Atom

iℏ
∂
∂t

ψ = −
ℏ2

2m
∇2ψ + Vψ

V(x, y, z, t) = V(r) = −
e2

4πϵ0r

special case:
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Hydrogen atom
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Hydrogen atom, 1H

General

Symbol 1H

Names hydrogen atom, H-1,
protium, ¹H

Protons 1

Neutrons 0

Nuclide data

Natural
abundance

99.985%

Isotope mass 1.007825 u

Spin 1
2

Excess energy 7288.969± 0.001 keV

Binding energy 0.000± 0.0000 keV

Isotopes of hydrogen 
Complete table of nuclides

Depiction of a hydrogen atom
showing the diameter as about twice
the Bohr model radius. (Image not to
scale)

3D illustration of the eigenstate 
. Electrons in this state are 45%

likely to be found within the solid body
shown.

Probability densities through the xz-plane for the electron
at different quantum numbers (ℓ, across top; n, down side;
m = 0)

The stereotypical "solar-system"
model for hydrogen.

From Wikipedia, the free encyclopedia
  (Redirected from Hydrogen Atom)

This article is about the physics of the hydrogen atom. For a chemical description, see hydrogen. For monatomic hydrogen, see Hydrogen § Atomic hydrogen.

A hydrogen atom is an atom of the chemical element hydrogen. The electrically neutral atom contains a single positively
charged proton and a single negatively charged electron bound to the nucleus by the Coulomb force. Atomic hydrogen
constitutes about 75% of the baryonic mass of the universe.[1]

In everyday life on Earth, isolated hydrogen atoms (called "atomic hydrogen") are extremely rare. Instead, a hydrogen atom
tends to combine with other atoms in compounds, or with another hydrogen atom to form ordinary (diatomic) hydrogen gas,
H2. "Atomic hydrogen" and "hydrogen atom" in ordinary English use have overlapping, yet distinct, meanings. For example,
a water molecule contains two hydrogen atoms, but does not contain atomic hydrogen (which would refer to isolated
hydrogen atoms).

Atomic spectroscopy shows that there is a discrete infinite set of states in which a hydrogen (or any) atom can exist,
contrary to the predictions of classical physics. Attempts to develop a theoretical understanding of the states of the
hydrogen atom have been important to the history of quantum mechanics, since all other atoms can be roughly understood
by knowing in detail about this simplest atomic structure.
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Isotopes [ edit ]

Main article: Isotopes of hydrogen

The most abundant isotope, hydrogen-1, protium, or light hydrogen, contains no neutrons and is simply a proton and an electron.
Protium is stable and makes up 99.985% of naturally occurring hydrogen atoms.[2]

Deuterium contains one neutron and one proton in its nucleus. Deuterium is stable and makes up 0.0156% of naturally occurring
hydrogen[2] and is used in industrial processes like nuclear reactors and Nuclear Magnetic Resonance.

Tritium contains two neutrons and one proton in its nucleus and is not stable, decaying with a half-life of 12.32 years. Because of its short half-life, tritium does not exist in
nature except in trace amounts.

Heavier isotopes of hydrogen are only created artificially in particle accelerators and have half-lives on the order of 10−22 seconds. They are unbound resonances located
beyond the neutron drip line; this results in prompt emission of a neutron.

The formulas below are valid for all three isotopes of hydrogen, but slightly different values of the Rydberg constant (correction formula given below) must be used for
each hydrogen isotope.

Hydrogen ion [ edit ]

Main articles: hydrogen cation and hydrogen anion

Lone neutral hydrogen atoms are rare under normal conditions. However, neutral hydrogen is common when it is covalently bound to another atom, and hydrogen atoms
can also exist in cationic and anionic forms.

If a neutral hydrogen atom loses its electron, it becomes a cation. The resulting ion, which consists solely of a proton for the usual isotope, is written as "H+" and
sometimes called hydron. Free protons are common in the interstellar medium, and solar wind. In the context of aqueous solutions of classical Brønsted–Lowry acids,
such as hydrochloric acid, it is actually hydronium, H3O+, that is meant. Instead of a literal ionized single hydrogen atom being formed, the acid transfers the hydrogen to
H2O, forming H3O+.

If instead a hydrogen atom gains a second electron, it becomes an anion. The hydrogen anion is written as "H–" and called hydride.

Theoretical analysis [ edit ]

The hydrogen atom has special significance in quantum mechanics and quantum field theory as a simple two-body problem physical system which has yielded many
simple analytical solutions in closed-form.

Failed classical description [ edit ]

Experiments by Ernest Rutherford in 1909 showed the structure of the atom to be a dense, positive nucleus with a tenuous negative charge cloud around it. This
immediately raised questions about how such a system could be stable. Classical electromagnetism had shown that any accelerating charge radiates energy, as shown
by the Larmor formula. If the electron is assumed to orbit in a perfect circle and radiates energy continuously, the electron would rapidly spiral into the nucleus with a fall
time of:[3]

where  is the Bohr radius and  is the classical electron radius. If this were true, all atoms would instantly collapse, however atoms seem to be stable. Furthermore,
the spiral inward would release a smear of electromagnetic frequencies as the orbit got smaller. Instead, atoms were observed to only emit discrete frequencies of
radiation. The resolution would lie in the development of quantum mechanics.

Bohr–Sommerfeld Model [ edit ]

Main article: Bohr model

In 1913, Niels Bohr obtained the energy levels and spectral frequencies of the hydrogen atom after making a number of simple assumptions in order to correct the failed
classical model. The assumptions included:

1. Electrons can only be in certain, discrete circular orbits or stationary states, thereby having a discrete set of possible radii and energies.
2. Electrons do not emit radiation while in one of these stationary states.
3. An electron can gain or lose energy by jumping from one discrete orbit to another.

Bohr supposed that the electron's angular momentum is quantized with possible values:

 where 

and  is Planck constant over . He also supposed that the centripetal force which keeps the electron in its orbit is provided by the Coulomb force, and that energy is
conserved. Bohr derived the energy of each orbit of the hydrogen atom to be:[4]

where  is the electron mass,  is the electron charge,  is the vacuum permittivity, and  is the quantum number (now known as the principal quantum number).
Bohr's predictions matched experiments measuring the hydrogen spectral series to the first order, giving more confidence to a theory that used quantized values.

For , the value

[5]

is called the Rydberg unit of energy. It is related to the Rydberg constant  of atomic physics by 

The exact value of the Rydberg constant assumes that the nucleus is infinitely massive with respect to the electron. For hydrogen-1, hydrogen-2 (deuterium), and
hydrogen-3 (tritium) which have finite mass, the constant must be slightly modified to use the reduced mass of the system, rather than simply the mass of the electron.
This includes the kinetic energy of the nucleus in the problem, because the total (electron plus nuclear) kinetic energy is equivalent to the kinetic energy of the reduced
mass moving with a velocity equal to the electron velocity relative to the nucleus. However, since the nucleus is much heavier than the electron, the electron mass and
reduced mass are nearly the same. The Rydberg constant RM for a hydrogen atom (one electron), R is given by

where  is the mass of the atomic nucleus. For hydrogen-1, the quantity  is about 1/1836 (i.e. the electron-to-proton mass ratio). For deuterium and tritium, the
ratios are about 1/3670 and 1/5497 respectively. These figures, when added to 1 in the denominator, represent very small corrections in the value of R, and thus only
small corrections to all energy levels in corresponding hydrogen isotopes.

There were still problems with Bohr's model:

1. it failed to predict other spectral details such as fine structure and hyperfine structure
2. it could only predict energy levels with any accuracy for single–electron atoms (hydrogen–like atoms)
3. the predicted values were only correct to , where  is the fine-structure constant.

Most of these shortcomings were resolved by Arnold Sommerfeld's modification of the Bohr model. Sommerfeld introduced two additional degrees of freedom, allowing
an electron to move on an elliptical orbit characterized by its eccentricity and declination with respect to a chosen axis. This introduced two additional quantum numbers,
which correspond to the orbital angular momentum and its projection on the chosen axis. Thus the correct multiplicity of states (except for the factor 2 accounting for the
yet unknown electron spin) was found. Further, by applying special relativity to the elliptic orbits, Sommerfeld succeeded in deriving the correct expression for the fine
structure of hydrogen spectra (which happens to be exactly the same as in the most elaborate Dirac theory). However, some observed phenomena, such as the
anomalous Zeeman effect, remained unexplained. These issues were resolved with the full development of quantum mechanics and the Dirac equation. It is often alleged
that the Schrödinger equation is superior to the Bohr–Sommerfeld theory in describing hydrogen atom. This is not the case, as most of the results of both approaches
coincide or are very close (a remarkable exception is the problem of hydrogen atom in crossed electric and magnetic fields, which cannot be self-consistently solved in
the framework of the Bohr–Sommerfeld theory), and in both theories the main shortcomings result from the absence of the electron spin. It was the complete failure of the
Bohr–Sommerfeld theory to explain many-electron systems (such as helium atom or hydrogen molecule) which demonstrated its inadequacy in describing quantum
phenomena.

Schrödinger equation [ edit ]

The Schrödinger equation allows one to calculate the stationary states and also the time evolution of quantum systems. Exact analytical answers are available for the
nonrelativistic hydrogen atom. Before we go to present a formal account, here we give an elementary overview.

Given that the hydrogen atom contains a nucleus and an electron, quantum mechanics allows one to predict the probability of finding the electron at any given radial
distance . It is given by the square of a mathematical function known as the "wavefunction," which is a solution of the Schrödinger equation. The lowest energy
equilibrium state of the hydrogen atom is known as the ground state. The ground state wave function is known as the  wavefunction. It is written as:

Here,  is the numerical value of the Bohr radius. The probability density of finding the electron at a distance  in any radial direction is the squared value of the
wavefunction:

The  wavefunction is spherically symmetric, and the surface area of a shell at distance  is , so the total probability  of the electron being in a shell at a
distance  and thickness  is

It turns out that this is a maximum at . That is, the Bohr picture of an electron orbiting the nucleus at radius  is recovered as a statistically valid result. However,
although the electron is most likely to be on a Bohr orbit, there is a finite probability that the electron may be at any other place , with the probability indicated by the
square of the wavefunction. Since the probability of finding the electron somewhere in the whole volume is unity, the integral of  is unity. Then we say that the
wavefunction is properly normalized.

As discussed below, the ground state  is also indicated by the quantum numbers . The second lowest energy states, just above the ground
state, are given by the quantum numbers , , and . These  states all have the same energy and are known as the  and  states.
There is one  state:

and there are three  states:

An electron in the  or  state is most likely to be found in the second Bohr orbit with energy given by the Bohr formula.

Wavefunction [ edit ]

The Hamiltonian of the hydrogen atom is the radial kinetic energy operator and Coulomb attraction force between the positive proton and negative electron. Using the
time-independent Schrödinger equation, ignoring all spin-coupling interactions and using the reduced mass , the equation is written as:

Expanding the Laplacian in spherical coordinates:

This is a separable, partial differential equation which can be solved in terms of special functions. When the wavefunction is separated as product of functions 
 and  three independent differential functions appears[6] being A and B separation constants:

radial: 

polar: 

azimuth: 

The normalized position wavefunctions, given in spherical coordinates are:

where:

,

 is the reduced Bohr radius, ,

 is a generalized Laguerre polynomial of degree , and

 is a spherical harmonic function of degree  and order . Note that the generalized Laguerre polynomials are
defined differently by different authors. The usage here is consistent with the definitions used by Messiah,[7] and
Mathematica.[8] In other places, the Laguerre polynomial includes a factor of ,[9] or the generalized Laguerre
polynomial appearing in the hydrogen wave function is  instead.[10]

The quantum numbers can take the following values:

 (principal quantum number)
 (azimuthal quantum number)

 (magnetic quantum number).

Additionally, these wavefunctions are normalized (i.e., the integral of their modulus square equals 1) and orthogonal:

where  is the state represented by the wavefunction  in Dirac notation, and  is the Kronecker delta function.[11]

The wavefunctions in momentum space are related to the wavefunctions in position space through a Fourier transform

which, for the bound states, results in[12]

where  denotes a Gegenbauer polynomial and  is in units of .

The solutions to the Schrödinger equation for hydrogen are analytical, giving a simple expression for the hydrogen energy levels and thus the frequencies of the
hydrogen spectral lines and fully reproduced the Bohr model and went beyond it. It also yields two other quantum numbers and the shape of the electron's wave function
("orbital") for the various possible quantum-mechanical states, thus explaining the anisotropic character of atomic bonds.

The Schrödinger equation also applies to more complicated atoms and molecules. When there is more than one electron or nucleus the solution is not analytical and
either computer calculations are necessary or simplifying assumptions must be made.

Since the Schrödinger equation is only valid for non-relativistic quantum mechanics, the solutions it yields for the hydrogen atom are not entirely correct. The Dirac
equation of relativistic quantum theory improves these solutions (see below).

Results of Schrödinger equation [ edit ]

The solution of the Schrödinger equation (wave equation) for the hydrogen atom uses the fact that the Coulomb potential produced by the nucleus is isotropic (it is
radially symmetric in space and only depends on the distance to the nucleus). Although the resulting energy eigenfunctions (the orbitals) are not necessarily isotropic
themselves, their dependence on the angular coordinates follows completely generally from this isotropy of the underlying potential: the eigenstates of the Hamiltonian
(that is, the energy eigenstates) can be chosen as simultaneous eigenstates of the angular momentum operator. This corresponds to the fact that angular momentum is
conserved in the orbital motion of the electron around the nucleus. Therefore, the energy eigenstates may be classified by two angular momentum quantum numbers, 
and  (both are integers). The angular momentum quantum number  determines the magnitude of the angular momentum. The magnetic quantum
number  determines the projection of the angular momentum on the (arbitrarily chosen) -axis.

In addition to mathematical expressions for total angular momentum and angular momentum projection of wavefunctions, an expression for the radial dependence of the
wave functions must be found. It is only here that the details of the  Coulomb potential enter (leading to Laguerre polynomials in ). This leads to a third quantum
number, the principal quantum number . The principal quantum number in hydrogen is related to the atom's total energy.

Note that the maximum value of the angular momentum quantum number is limited by the principal quantum number: it can run only up to , i.e., 
.

Due to angular momentum conservation, states of the same  but different  have the same energy (this holds for all problems with rotational symmetry). In addition, for
the hydrogen atom, states of the same  but different  are also degenerate (i.e., they have the same energy). However, this is a specific property of hydrogen and is no
longer true for more complicated atoms which have an (effective) potential differing from the form  (due to the presence of the inner electrons shielding the nucleus
potential).

Taking into account the spin of the electron adds a last quantum number, the projection of the electron's spin angular momentum along the -axis, which can take on two
values. Therefore, any eigenstate of the electron in the hydrogen atom is described fully by four quantum numbers. According to the usual rules of quantum mechanics,
the actual state of the electron may be any superposition of these states. This explains also why the choice of -axis for the directional quantization of the angular
momentum vector is immaterial: an orbital of given  and  obtained for another preferred axis  can always be represented as a suitable superposition of the various
states of different  (but same ) that have been obtained for .

Mathematical summary of eigenstates of hydrogen atom [ edit ]
Main article: Hydrogen-like atom

In 1928, Paul Dirac found an equation that was fully compatible with special relativity, and (as a consequence) made the wave function a 4-component "Dirac spinor"
including "up" and "down" spin components, with both positive and "negative" energy (or matter and antimatter). The solution to this equation gave the following results,
more accurate than the Schrödinger solution.

Energy levels [ edit ]

The energy levels of hydrogen, including fine structure (excluding Lamb shift and hyperfine structure), are given by the Sommerfeld fine structure expression:[13]

where  is the fine-structure constant and  is the total angular momentum quantum number, which is equal to , depending on the orientation of the electron spin
relative to the orbital angular momentum.[14] This formula represents a small correction to the energy obtained by Bohr and Schrödinger as given above. The factor in
square brackets in the last expression is nearly one; the extra term arises from relativistic effects (for details, see #Features going beyond the Schrödinger solution). It is
worth noting that this expression was first obtained by A. Sommerfeld in 1916 based on the relativistic version of the old Bohr theory. Sommerfeld has however used
different notation for the quantum numbers.

Coherent states [ edit ]

The coherent states have been proposed as[15]

which satisfies  and takes the form

Visualizing the hydrogen electron orbitals [ edit ]

Main article: Atomic orbital

The image to the right shows the first few hydrogen atom orbitals (energy eigenfunctions). These are cross-
sections of the probability density that are color-coded (black represents zero density and white represents the
highest density). The angular momentum (orbital) quantum number ℓ is denoted in each column, using the usual
spectroscopic letter code (s means ℓ = 0, p means ℓ = 1, d means ℓ = 2). The main (principal) quantum number n
(= 1, 2, 3, ...) is marked to the right of each row. For all pictures the magnetic quantum number m has been set to
0, and the cross-sectional plane is the xz-plane (z is the vertical axis). The probability density in three-dimensional
space is obtained by rotating the one shown here around the z-axis.

The "ground state", i.e. the state of lowest energy, in which the electron is usually found, is the first one, the 1s
state (principal quantum level n = 1, ℓ = 0).

Black lines occur in each but the first orbital: these are the nodes of the wavefunction, i.e. where the probability
density is zero. (More precisely, the nodes are spherical harmonics that appear as a result of solving Schrödinger
equation in spherical coordinates.)

The quantum numbers determine the layout of these nodes.[16] There are:

 total nodes,
 of which are angular nodes:

 angular nodes go around the  axis (in the xy plane). (The figure above does not show these nodes since it

plots cross-sections through the xz-plane.)

 (the remaining angular nodes) occur on the  (vertical) axis.
 (the remaining non-angular nodes) are radial nodes.

Features going beyond the Schrödinger solution [ edit ]

There are several important effects that are neglected by the Schrödinger equation and which are responsible for certain small but measurable deviations of the real
spectral lines from the predicted ones:

Although the mean speed of the electron in hydrogen is only 1/137th of the speed of light, many modern experiments are sufficiently precise that a complete
theoretical explanation requires a fully relativistic treatment of the problem. A relativistic treatment results in a momentum increase of about 1 part in 37,000 for the
electron. Since the electron's wavelength is determined by its momentum, orbitals containing higher speed electrons show contraction due to smaller wavelengths.
Even when there is no external magnetic field, in the inertial frame of the moving electron, the electromagnetic field of the nucleus has a magnetic component. The
spin of the electron has an associated magnetic moment which interacts with this magnetic field. This effect is also explained by special relativity, and it leads to the
so-called spin-orbit coupling, i.e., an interaction between the electron's orbital motion around the nucleus, and its spin.

Both of these features (and more) are incorporated in the relativistic Dirac equation, with predictions that come still closer to experiment. Again the Dirac equation may be
solved analytically in the special case of a two-body system, such as the hydrogen atom. The resulting solution quantum states now must be classified by the total
angular momentum number j (arising through the coupling between electron spin and orbital angular momentum). States of the same j and the same n are still
degenerate. Thus, direct analytical solution of Dirac equation predicts 2S(1

2) and 2P(1
2) levels of hydrogen to have exactly the same energy, which is in a contradiction

with observations (Lamb–Retherford experiment).

There are always vacuum fluctuations of the electromagnetic field, according to quantum mechanics. Due to such fluctuations degeneracy between states of the
same j but different l is lifted, giving them slightly different energies. This has been demonstrated in the famous Lamb–Retherford experiment and was the starting
point for the development of the theory of quantum electrodynamics (which is able to deal with these vacuum fluctuations and employs the famous Feynman
diagrams for approximations using perturbation theory). This effect is now called Lamb shift.

For these developments, it was essential that the solution of the Dirac equation for the hydrogen atom could be worked out exactly, such that any experimentally
observed deviation had to be taken seriously as a signal of failure of the theory.

Alternatives to the Schrödinger theory [ edit ]

In the language of Heisenberg's matrix mechanics, the hydrogen atom was first solved by Wolfgang Pauli[17] using a rotational symmetry in four dimensions [O(4)-
symmetry] generated by the angular momentum and the Laplace–Runge–Lenz vector. By extending the symmetry group O(4) to the dynamical group O(4,2), the entire
spectrum and all transitions were embedded in a single irreducible group representation.[18]

In 1979 the (non-relativistic) hydrogen atom was solved for the first time within Feynman's path integral formulation of quantum mechanics by Duru and Kleinert.[19][20]

This work greatly extended the range of applicability of Feynman's method.
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Hydrogen atom, 1H

General

Symbol 1H

Names hydrogen atom, H-1,
protium, ¹H

Protons 1

Neutrons 0

Nuclide data

Natural
abundance

99.985%

Isotope mass 1.007825 u

Spin 1
2

Excess energy 7288.969± 0.001 keV

Binding energy 0.000± 0.0000 keV

Isotopes of hydrogen 
Complete table of nuclides

Depiction of a hydrogen atom
showing the diameter as about twice
the Bohr model radius. (Image not to
scale)

3D illustration of the eigenstate 
. Electrons in this state are 45%

likely to be found within the solid body
shown.

Probability densities through the xz-plane for the electron
at different quantum numbers (ℓ, across top; n, down side;
m = 0)

The stereotypical "solar-system"
model for hydrogen.

From Wikipedia, the free encyclopedia
  (Redirected from Hydrogen Atom)

This article is about the physics of the hydrogen atom. For a chemical description, see hydrogen. For monatomic hydrogen, see Hydrogen § Atomic hydrogen.

A hydrogen atom is an atom of the chemical element hydrogen. The electrically neutral atom contains a single positively
charged proton and a single negatively charged electron bound to the nucleus by the Coulomb force. Atomic hydrogen
constitutes about 75% of the baryonic mass of the universe.[1]

In everyday life on Earth, isolated hydrogen atoms (called "atomic hydrogen") are extremely rare. Instead, a hydrogen atom
tends to combine with other atoms in compounds, or with another hydrogen atom to form ordinary (diatomic) hydrogen gas,
H2. "Atomic hydrogen" and "hydrogen atom" in ordinary English use have overlapping, yet distinct, meanings. For example,
a water molecule contains two hydrogen atoms, but does not contain atomic hydrogen (which would refer to isolated
hydrogen atoms).

Atomic spectroscopy shows that there is a discrete infinite set of states in which a hydrogen (or any) atom can exist,
contrary to the predictions of classical physics. Attempts to develop a theoretical understanding of the states of the
hydrogen atom have been important to the history of quantum mechanics, since all other atoms can be roughly understood
by knowing in detail about this simplest atomic structure.
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Isotopes [ edit ]

Main article: Isotopes of hydrogen

The most abundant isotope, hydrogen-1, protium, or light hydrogen, contains no neutrons and is simply a proton and an electron.
Protium is stable and makes up 99.985% of naturally occurring hydrogen atoms.[2]

Deuterium contains one neutron and one proton in its nucleus. Deuterium is stable and makes up 0.0156% of naturally occurring
hydrogen[2] and is used in industrial processes like nuclear reactors and Nuclear Magnetic Resonance.

Tritium contains two neutrons and one proton in its nucleus and is not stable, decaying with a half-life of 12.32 years. Because of its short half-life, tritium does not exist in
nature except in trace amounts.

Heavier isotopes of hydrogen are only created artificially in particle accelerators and have half-lives on the order of 10−22 seconds. They are unbound resonances located
beyond the neutron drip line; this results in prompt emission of a neutron.

The formulas below are valid for all three isotopes of hydrogen, but slightly different values of the Rydberg constant (correction formula given below) must be used for
each hydrogen isotope.

Hydrogen ion [ edit ]

Main articles: hydrogen cation and hydrogen anion

Lone neutral hydrogen atoms are rare under normal conditions. However, neutral hydrogen is common when it is covalently bound to another atom, and hydrogen atoms
can also exist in cationic and anionic forms.

If a neutral hydrogen atom loses its electron, it becomes a cation. The resulting ion, which consists solely of a proton for the usual isotope, is written as "H+" and
sometimes called hydron. Free protons are common in the interstellar medium, and solar wind. In the context of aqueous solutions of classical Brønsted–Lowry acids,
such as hydrochloric acid, it is actually hydronium, H3O+, that is meant. Instead of a literal ionized single hydrogen atom being formed, the acid transfers the hydrogen to
H2O, forming H3O+.

If instead a hydrogen atom gains a second electron, it becomes an anion. The hydrogen anion is written as "H–" and called hydride.

Theoretical analysis [ edit ]

The hydrogen atom has special significance in quantum mechanics and quantum field theory as a simple two-body problem physical system which has yielded many
simple analytical solutions in closed-form.

Failed classical description [ edit ]

Experiments by Ernest Rutherford in 1909 showed the structure of the atom to be a dense, positive nucleus with a tenuous negative charge cloud around it. This
immediately raised questions about how such a system could be stable. Classical electromagnetism had shown that any accelerating charge radiates energy, as shown
by the Larmor formula. If the electron is assumed to orbit in a perfect circle and radiates energy continuously, the electron would rapidly spiral into the nucleus with a fall
time of:[3]

where  is the Bohr radius and  is the classical electron radius. If this were true, all atoms would instantly collapse, however atoms seem to be stable. Furthermore,
the spiral inward would release a smear of electromagnetic frequencies as the orbit got smaller. Instead, atoms were observed to only emit discrete frequencies of
radiation. The resolution would lie in the development of quantum mechanics.

Bohr–Sommerfeld Model [ edit ]

Main article: Bohr model

In 1913, Niels Bohr obtained the energy levels and spectral frequencies of the hydrogen atom after making a number of simple assumptions in order to correct the failed
classical model. The assumptions included:

1. Electrons can only be in certain, discrete circular orbits or stationary states, thereby having a discrete set of possible radii and energies.
2. Electrons do not emit radiation while in one of these stationary states.
3. An electron can gain or lose energy by jumping from one discrete orbit to another.

Bohr supposed that the electron's angular momentum is quantized with possible values:

 where 

and  is Planck constant over . He also supposed that the centripetal force which keeps the electron in its orbit is provided by the Coulomb force, and that energy is
conserved. Bohr derived the energy of each orbit of the hydrogen atom to be:[4]

where  is the electron mass,  is the electron charge,  is the vacuum permittivity, and  is the quantum number (now known as the principal quantum number).
Bohr's predictions matched experiments measuring the hydrogen spectral series to the first order, giving more confidence to a theory that used quantized values.

For , the value

[5]

is called the Rydberg unit of energy. It is related to the Rydberg constant  of atomic physics by 

The exact value of the Rydberg constant assumes that the nucleus is infinitely massive with respect to the electron. For hydrogen-1, hydrogen-2 (deuterium), and
hydrogen-3 (tritium) which have finite mass, the constant must be slightly modified to use the reduced mass of the system, rather than simply the mass of the electron.
This includes the kinetic energy of the nucleus in the problem, because the total (electron plus nuclear) kinetic energy is equivalent to the kinetic energy of the reduced
mass moving with a velocity equal to the electron velocity relative to the nucleus. However, since the nucleus is much heavier than the electron, the electron mass and
reduced mass are nearly the same. The Rydberg constant RM for a hydrogen atom (one electron), R is given by

where  is the mass of the atomic nucleus. For hydrogen-1, the quantity  is about 1/1836 (i.e. the electron-to-proton mass ratio). For deuterium and tritium, the
ratios are about 1/3670 and 1/5497 respectively. These figures, when added to 1 in the denominator, represent very small corrections in the value of R, and thus only
small corrections to all energy levels in corresponding hydrogen isotopes.

There were still problems with Bohr's model:

1. it failed to predict other spectral details such as fine structure and hyperfine structure
2. it could only predict energy levels with any accuracy for single–electron atoms (hydrogen–like atoms)
3. the predicted values were only correct to , where  is the fine-structure constant.

Most of these shortcomings were resolved by Arnold Sommerfeld's modification of the Bohr model. Sommerfeld introduced two additional degrees of freedom, allowing
an electron to move on an elliptical orbit characterized by its eccentricity and declination with respect to a chosen axis. This introduced two additional quantum numbers,
which correspond to the orbital angular momentum and its projection on the chosen axis. Thus the correct multiplicity of states (except for the factor 2 accounting for the
yet unknown electron spin) was found. Further, by applying special relativity to the elliptic orbits, Sommerfeld succeeded in deriving the correct expression for the fine
structure of hydrogen spectra (which happens to be exactly the same as in the most elaborate Dirac theory). However, some observed phenomena, such as the
anomalous Zeeman effect, remained unexplained. These issues were resolved with the full development of quantum mechanics and the Dirac equation. It is often alleged
that the Schrödinger equation is superior to the Bohr–Sommerfeld theory in describing hydrogen atom. This is not the case, as most of the results of both approaches
coincide or are very close (a remarkable exception is the problem of hydrogen atom in crossed electric and magnetic fields, which cannot be self-consistently solved in
the framework of the Bohr–Sommerfeld theory), and in both theories the main shortcomings result from the absence of the electron spin. It was the complete failure of the
Bohr–Sommerfeld theory to explain many-electron systems (such as helium atom or hydrogen molecule) which demonstrated its inadequacy in describing quantum
phenomena.

Schrödinger equation [ edit ]

The Schrödinger equation allows one to calculate the stationary states and also the time evolution of quantum systems. Exact analytical answers are available for the
nonrelativistic hydrogen atom. Before we go to present a formal account, here we give an elementary overview.

Given that the hydrogen atom contains a nucleus and an electron, quantum mechanics allows one to predict the probability of finding the electron at any given radial
distance . It is given by the square of a mathematical function known as the "wavefunction," which is a solution of the Schrödinger equation. The lowest energy
equilibrium state of the hydrogen atom is known as the ground state. The ground state wave function is known as the  wavefunction. It is written as:

Here,  is the numerical value of the Bohr radius. The probability density of finding the electron at a distance  in any radial direction is the squared value of the
wavefunction:

The  wavefunction is spherically symmetric, and the surface area of a shell at distance  is , so the total probability  of the electron being in a shell at a
distance  and thickness  is

It turns out that this is a maximum at . That is, the Bohr picture of an electron orbiting the nucleus at radius  is recovered as a statistically valid result. However,
although the electron is most likely to be on a Bohr orbit, there is a finite probability that the electron may be at any other place , with the probability indicated by the
square of the wavefunction. Since the probability of finding the electron somewhere in the whole volume is unity, the integral of  is unity. Then we say that the
wavefunction is properly normalized.

As discussed below, the ground state  is also indicated by the quantum numbers . The second lowest energy states, just above the ground
state, are given by the quantum numbers , , and . These  states all have the same energy and are known as the  and  states.
There is one  state:

and there are three  states:

An electron in the  or  state is most likely to be found in the second Bohr orbit with energy given by the Bohr formula.

Wavefunction [ edit ]

The Hamiltonian of the hydrogen atom is the radial kinetic energy operator and Coulomb attraction force between the positive proton and negative electron. Using the
time-independent Schrödinger equation, ignoring all spin-coupling interactions and using the reduced mass , the equation is written as:

Expanding the Laplacian in spherical coordinates:

This is a separable, partial differential equation which can be solved in terms of special functions. When the wavefunction is separated as product of functions 
 and  three independent differential functions appears[6] being A and B separation constants:

radial: 

polar: 

azimuth: 

The normalized position wavefunctions, given in spherical coordinates are:

where:

,

 is the reduced Bohr radius, ,

 is a generalized Laguerre polynomial of degree , and

 is a spherical harmonic function of degree  and order . Note that the generalized Laguerre polynomials are
defined differently by different authors. The usage here is consistent with the definitions used by Messiah,[7] and
Mathematica.[8] In other places, the Laguerre polynomial includes a factor of ,[9] or the generalized Laguerre
polynomial appearing in the hydrogen wave function is  instead.[10]

The quantum numbers can take the following values:

 (principal quantum number)
 (azimuthal quantum number)

 (magnetic quantum number).

Additionally, these wavefunctions are normalized (i.e., the integral of their modulus square equals 1) and orthogonal:

where  is the state represented by the wavefunction  in Dirac notation, and  is the Kronecker delta function.[11]

The wavefunctions in momentum space are related to the wavefunctions in position space through a Fourier transform

which, for the bound states, results in[12]

where  denotes a Gegenbauer polynomial and  is in units of .

The solutions to the Schrödinger equation for hydrogen are analytical, giving a simple expression for the hydrogen energy levels and thus the frequencies of the
hydrogen spectral lines and fully reproduced the Bohr model and went beyond it. It also yields two other quantum numbers and the shape of the electron's wave function
("orbital") for the various possible quantum-mechanical states, thus explaining the anisotropic character of atomic bonds.

The Schrödinger equation also applies to more complicated atoms and molecules. When there is more than one electron or nucleus the solution is not analytical and
either computer calculations are necessary or simplifying assumptions must be made.

Since the Schrödinger equation is only valid for non-relativistic quantum mechanics, the solutions it yields for the hydrogen atom are not entirely correct. The Dirac
equation of relativistic quantum theory improves these solutions (see below).

Results of Schrödinger equation [ edit ]

The solution of the Schrödinger equation (wave equation) for the hydrogen atom uses the fact that the Coulomb potential produced by the nucleus is isotropic (it is
radially symmetric in space and only depends on the distance to the nucleus). Although the resulting energy eigenfunctions (the orbitals) are not necessarily isotropic
themselves, their dependence on the angular coordinates follows completely generally from this isotropy of the underlying potential: the eigenstates of the Hamiltonian
(that is, the energy eigenstates) can be chosen as simultaneous eigenstates of the angular momentum operator. This corresponds to the fact that angular momentum is
conserved in the orbital motion of the electron around the nucleus. Therefore, the energy eigenstates may be classified by two angular momentum quantum numbers, 
and  (both are integers). The angular momentum quantum number  determines the magnitude of the angular momentum. The magnetic quantum
number  determines the projection of the angular momentum on the (arbitrarily chosen) -axis.

In addition to mathematical expressions for total angular momentum and angular momentum projection of wavefunctions, an expression for the radial dependence of the
wave functions must be found. It is only here that the details of the  Coulomb potential enter (leading to Laguerre polynomials in ). This leads to a third quantum
number, the principal quantum number . The principal quantum number in hydrogen is related to the atom's total energy.

Note that the maximum value of the angular momentum quantum number is limited by the principal quantum number: it can run only up to , i.e., 
.

Due to angular momentum conservation, states of the same  but different  have the same energy (this holds for all problems with rotational symmetry). In addition, for
the hydrogen atom, states of the same  but different  are also degenerate (i.e., they have the same energy). However, this is a specific property of hydrogen and is no
longer true for more complicated atoms which have an (effective) potential differing from the form  (due to the presence of the inner electrons shielding the nucleus
potential).

Taking into account the spin of the electron adds a last quantum number, the projection of the electron's spin angular momentum along the -axis, which can take on two
values. Therefore, any eigenstate of the electron in the hydrogen atom is described fully by four quantum numbers. According to the usual rules of quantum mechanics,
the actual state of the electron may be any superposition of these states. This explains also why the choice of -axis for the directional quantization of the angular
momentum vector is immaterial: an orbital of given  and  obtained for another preferred axis  can always be represented as a suitable superposition of the various
states of different  (but same ) that have been obtained for .

Mathematical summary of eigenstates of hydrogen atom [ edit ]
Main article: Hydrogen-like atom

In 1928, Paul Dirac found an equation that was fully compatible with special relativity, and (as a consequence) made the wave function a 4-component "Dirac spinor"
including "up" and "down" spin components, with both positive and "negative" energy (or matter and antimatter). The solution to this equation gave the following results,
more accurate than the Schrödinger solution.

Energy levels [ edit ]

The energy levels of hydrogen, including fine structure (excluding Lamb shift and hyperfine structure), are given by the Sommerfeld fine structure expression:[13]

where  is the fine-structure constant and  is the total angular momentum quantum number, which is equal to , depending on the orientation of the electron spin
relative to the orbital angular momentum.[14] This formula represents a small correction to the energy obtained by Bohr and Schrödinger as given above. The factor in
square brackets in the last expression is nearly one; the extra term arises from relativistic effects (for details, see #Features going beyond the Schrödinger solution). It is
worth noting that this expression was first obtained by A. Sommerfeld in 1916 based on the relativistic version of the old Bohr theory. Sommerfeld has however used
different notation for the quantum numbers.

Coherent states [ edit ]

The coherent states have been proposed as[15]

which satisfies  and takes the form

Visualizing the hydrogen electron orbitals [ edit ]

Main article: Atomic orbital

The image to the right shows the first few hydrogen atom orbitals (energy eigenfunctions). These are cross-
sections of the probability density that are color-coded (black represents zero density and white represents the
highest density). The angular momentum (orbital) quantum number ℓ is denoted in each column, using the usual
spectroscopic letter code (s means ℓ = 0, p means ℓ = 1, d means ℓ = 2). The main (principal) quantum number n
(= 1, 2, 3, ...) is marked to the right of each row. For all pictures the magnetic quantum number m has been set to
0, and the cross-sectional plane is the xz-plane (z is the vertical axis). The probability density in three-dimensional
space is obtained by rotating the one shown here around the z-axis.

The "ground state", i.e. the state of lowest energy, in which the electron is usually found, is the first one, the 1s
state (principal quantum level n = 1, ℓ = 0).

Black lines occur in each but the first orbital: these are the nodes of the wavefunction, i.e. where the probability
density is zero. (More precisely, the nodes are spherical harmonics that appear as a result of solving Schrödinger
equation in spherical coordinates.)

The quantum numbers determine the layout of these nodes.[16] There are:

 total nodes,
 of which are angular nodes:

 angular nodes go around the  axis (in the xy plane). (The figure above does not show these nodes since it

plots cross-sections through the xz-plane.)

 (the remaining angular nodes) occur on the  (vertical) axis.
 (the remaining non-angular nodes) are radial nodes.

Features going beyond the Schrödinger solution [ edit ]

There are several important effects that are neglected by the Schrödinger equation and which are responsible for certain small but measurable deviations of the real
spectral lines from the predicted ones:

Although the mean speed of the electron in hydrogen is only 1/137th of the speed of light, many modern experiments are sufficiently precise that a complete
theoretical explanation requires a fully relativistic treatment of the problem. A relativistic treatment results in a momentum increase of about 1 part in 37,000 for the
electron. Since the electron's wavelength is determined by its momentum, orbitals containing higher speed electrons show contraction due to smaller wavelengths.
Even when there is no external magnetic field, in the inertial frame of the moving electron, the electromagnetic field of the nucleus has a magnetic component. The
spin of the electron has an associated magnetic moment which interacts with this magnetic field. This effect is also explained by special relativity, and it leads to the
so-called spin-orbit coupling, i.e., an interaction between the electron's orbital motion around the nucleus, and its spin.

Both of these features (and more) are incorporated in the relativistic Dirac equation, with predictions that come still closer to experiment. Again the Dirac equation may be
solved analytically in the special case of a two-body system, such as the hydrogen atom. The resulting solution quantum states now must be classified by the total
angular momentum number j (arising through the coupling between electron spin and orbital angular momentum). States of the same j and the same n are still
degenerate. Thus, direct analytical solution of Dirac equation predicts 2S(1

2) and 2P(1
2) levels of hydrogen to have exactly the same energy, which is in a contradiction

with observations (Lamb–Retherford experiment).

There are always vacuum fluctuations of the electromagnetic field, according to quantum mechanics. Due to such fluctuations degeneracy between states of the
same j but different l is lifted, giving them slightly different energies. This has been demonstrated in the famous Lamb–Retherford experiment and was the starting
point for the development of the theory of quantum electrodynamics (which is able to deal with these vacuum fluctuations and employs the famous Feynman
diagrams for approximations using perturbation theory). This effect is now called Lamb shift.

For these developments, it was essential that the solution of the Dirac equation for the hydrogen atom could be worked out exactly, such that any experimentally
observed deviation had to be taken seriously as a signal of failure of the theory.

Alternatives to the Schrödinger theory [ edit ]

In the language of Heisenberg's matrix mechanics, the hydrogen atom was first solved by Wolfgang Pauli[17] using a rotational symmetry in four dimensions [O(4)-
symmetry] generated by the angular momentum and the Laplace–Runge–Lenz vector. By extending the symmetry group O(4) to the dynamical group O(4,2), the entire
spectrum and all transitions were embedded in a single irreducible group representation.[18]

In 1979 the (non-relativistic) hydrogen atom was solved for the first time within Feynman's path integral formulation of quantum mechanics by Duru and Kleinert.[19][20]

This work greatly extended the range of applicability of Feynman's method.
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ψ(r, θ, φ) = R(r) Θ(θ) Φ(φ)

Quantum numbers: n, ℓ, m

ψn,ℓ,m(r, θ, φ) ∝ Rn,ℓ(r) Yℓ,m(θ, φ)

orbital angular momentum: ℓ = 0,1,2,3,... < n
projection of angular momentum: m = − ℓ, (−ℓ + 1), . . ,0,..,(ℓ − 1), ℓ

principal quantum number: n = 1,2,3,...
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Quantum Physics: Hydrogen Atom

ψn,ℓ,m(r, θ, φ) ∝ Rn,ℓ(r) Yℓ,m(θ, φ)
|m | ≤ ℓ = 0,1,2,3,... < n

n = 1,2,3,...

Re Yℓ,m(θ, φ)

Probability to find electron in  (r, θ, φ)

ℓ = 0, m = 0

ℓ = 1

ℓ = 2

En = −
ℏ2

2ma0

1
n2

|ψn,ℓ,m(r, θ, φ) |2 R1,0(r) ∝ e−r/a0ground state
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Quantum Physics: Atoms
— Particles (electrons) occupy the lowest energy states 

— No two identical particles (electrons) 
     may have the same set of quantum numbers (n, ℓ, m, sz)

(Pauli exclusion principle)

|m | ≤ ℓ = 0,1,2,3,... < n

sz = ± ℏ
2

H, He
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https://pdg.lbl.gov/2020/reviews/rpp2020-rev-periodic-table.pdf
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Table 4.1. Revised June 2019 by D.E. Groom (LBNL). The atomic number (top left) is the number of protons in the nucleus. The atomic masses (bottom) of stable
elements are weighted by isotopic abundances in the Earth’s surface. Atomic masses are relative to the mass of 12C, defined to be exactly 12 unified atomic mass units
(u) (1 u ≈ 1 g/mole). The exceptions are Th, Pa, and U, which have no stable isotopes but do have characteristic terrestrial compositions. Relative isotopic abundances
often vary considerably, both in natural and commercial samples; this is reflected in the number of significant figures given for the mass. Masses may be found at
https://www.nist.gov/pml/atomic-weights-and-isotopic-compositions-relative-atomic-masses. If there is no stable isotope, the atomic mass of the most stable
isotope known as of June 2019 is given in parentheses.

IUPAC announced verification of the discoveries of elements 113, 115, 117, and 118 in December 2015. The names were approved November 2016. The 7th period of the
periodic table is now complete.

1
IA

18
VIIIA

1 H
hydrogen

1.008
2
IIA

13
IIIA

14
IVA

15
VA

16
VIA

17
VIIA

2 He
helium

4.002602
3 Li
lithium

6.94

4 Be
beryllium

9.012182

PERIODIC TABLEOFTHEELEMENTS
5 B
boron

10.81

6 C
carbon

12.0107

7 N
nitrogen

14.007

8 O
oxygen

15.999

9 F
fluorine

18.998403163

10 Ne
neon

20.1797

11 Na
sodium

22.98976928

12 Mg
magnesium

24.305
3

IIIB
4

IVB
5
VB

6
VIB

7
VIIB

8 9
VIII

10 11
IB

12
IIB

13 Al
aluminum

26.9815385

14 Si
silicon

28.085

15 P
phosphorus

30.973761998

16 S
sulfur

32.06

17 Cl
chlorine

35.45

18 Ar
argon

39.948

19 K
potassium

39.0983

20 Ca
calcium

40.078

21 Sc
scandium

44.955908

22 Ti
titanium

47.867

23 V
vanadium

50.9415

24 Cr
chromium

51.9961

25 Mn
manganese

54.938044

26 Fe
iron

55.845

27 Co
cobalt

58.933195

28 Ni
nickel

58.6934

29 Cu
copper

63.546

30 Zn
zinc

65.38

31 Ga
gallium

69.723

32 Ge
germanium

72.630

33 As
arsenic

74.921595

34 Se
selenium

78.971

35 Br
bromine

79.904

36 Kr
krypton

83.798
37 Rb
rubidium

85.4678

38 Sr
strontium

87.62

39 Y
yttrium

88.90584

40 Zr
zirconium

91.224

41 Nb
niobium

92.90637

42 Mo
molybdenum

95.95

43 Tc
technetium

(97.907212)

44 Ru
ruthenium

101.07

45 Rh
rhodium

102.90550

46 Pd
palladium

106.42

47 Ag
silver

107.8682

48 Cd
cadmium

112.414

49 In
indium

114.818

50 Sn
tin

118.710

51 Sb
antimony

121.760

52 Te
tellurium

127.60

53 I
iodine

126.90447

54 Xe
xenon

131.293
55 Cs
caesium

132.90545196

56 Ba
barium

137.327

57–71
LANTHA-

NIDES

72 Hf
hafnium

178.49

73 Ta
tantalum

180.94788

74 W
tungsten

183.84

75 Re
rhenium

186.207

76 Os
osmium

190.23

77 Ir
iridium

192.217

78 Pt
platinum

195.084

79 Au
gold

196.966569

80 Hg
mercury

200.592

81 Tl
thallium

204.38

82 Pb
lead

207.2

83 Bi
bismuth

208.98040

84 Po
polonium

(208.98243)

85 At
astatine

(209.98715)

86 Rn
radon

(222.01758)

87 Fr
francium

(223.01974)

88 Ra
radium

(226.02541)

89–103
ACTINIDES

104 Rf
rutherford.

(267.12169)

105 Db
dubnium

(268.12567)

106 Sg
seaborgium

(269.12863)

107 Bh
bohrium

(270.13336)

108 Hs
hassium

(269.13375)

109 Mt
meitnerium

(278.1563)

110 Ds
darmstadt.

(281.1645)

111 Rg
roentgen.

(282.16912)

112 Cn
copernicium

(285.17712)

113 Nh
nihonium

(286.18221)

114 Fl
flerovium

(289.19042

115 Mc
moscovium

(290.19598)

116 Lv
livermorium

(293.20449

117 Ts
tennessine

(294.2105)

118 Og
oganesson

(294.21392)

Lanthanide
series

57 La
lanthanum

138.90547

58 Ce
cerium

140.116

59 Pr
praseodym.

140.90766

60 Nd
neodymium

144.242

61 Pm
promethium

(144.91276)

62 Sm
samarium

150.36

63 Eu
europium

151.964

64 Gd
gadolinum

157.25

65 Tb
terbium

158.92535

66 Dy
dysprosium

162.500

67 Ho
holmium

164.93033

68 Er
erbium

167.259

69 Tm
thulium

168.93422

70 Yb
ytterbium

173.054

71 Lu
lutetium

174.9668

Actinide
series

89 Ac
actinium

(227.02775)

90 Th
thorium

232.0377

91 Pa
protactinium

231.03588

92 U
uranium

238.02891

93 Np
neptunium

(237.04817)

94 Pu
plutonium

(244.06420)

95 Am
americium

(243.06138)

96 Cm
curium

(247.07035)

97 Bk
berkelium

(247.07031)

98 Cf
californium

(251.07959)

99 Es
einsteinium

(252.08298)

100 Fm
fermium

(257.09511)

101 Md
mendelevium

(258.09844)

102 No
nobelium

(259.10103)

103 Lr
lawrencium

(262.10961)
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Atomic Physics
— Particles (electrons) occupy the lowest energy states 

— No two identical particles (electrons) 
     may have the same set of quantum numbers (n, ℓ, m, sz)

(Pauli exclusion principle)

|m | ≤ ℓ = 0,1,2,3,... < n

sz = ± ℏ
2

H, He

orbital angular momentum: ℓ = 0,1,2,3,... < n
projection of angular momentum: 
m = − ℓ, (−ℓ + 1), . . ,0,..,(ℓ − 1), ℓ

principal quantum number: n = 1,2,3,...

ψn,ℓ,m(r, θ, φ) ∝ Rn,ℓ(r) Yℓ,m(θ, φ)
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Nuclear binding energy

B(A, Z) = [Z(Mp + me) + (A − Z)Mn − M(A, Z)] ⋅ c2

B(A, Z)
A

8 MeV

iiron is strongly bound

α particle is 
relatively strongly bound
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Abundance of the chemical elements on Earth
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Stable nuclide (nuclear species)

stable isotopes
(do not decay)
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Types of decay (weak force)

n → p + e− + ν̄e

p → n + e+ + νe

also electron capture

106
48 Cd → 106

46 Pd + 2e+ + 2νe

Weak interactions:

p + e− → n + νe

including double-β decay

including double-β decay

too many neutrons:

too many protons:
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Types of decay (strong force)

eject proton

eject neutron

eject α particle (2n2p) 

fission (more next)

Strong interactions:

too many protons:

too many neutrons:

too many nucleons:

too many nucleons:
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Types of decay

radioactive isotopes:
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Fission

fission
too many nucleons:

 rays (energy)γ

neutrons 

induced nuclear fission

neutron 

fission
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Fission

Chain reaction
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Nature of Nuclear Force

B(A, Z) = [Z(Mp + me) + (A − Z)Mn − M(A, Z)] ⋅ c2

Nuclear binding energy - key in understanding nuclear processes

protonneutron
color-neutral
charge-neutral

color-neutral

no strong or EM force at large distance 

Nuclear force - based on strong force, but works differently
than binding force of quarks and baryons
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Nature of Nuclear Force

B(A, Z) = [Z(Mp + me) + (A − Z)Mn − M(A, Z)] ⋅ c2

Nuclear binding energy - key in understanding nuclear processes

protonneutron

strong force attraction and repulsion at shorter distances:

deuteron Isospin=0
L=0 (96%)
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Particle Physics perspective:

Nature of Nuclear Force

color-neutral

meson exchangequark exchange
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Nature of Nuclear Force

proton
neutron

Yukawa potential at larger distances:

r

V(r) = g ⋅
e− mπc

ℏ r

r
range d ∼

ℏ
mπc

∼ 1.4 fm

∼ 1.4 × 10−15 m

VQCD(r) = −
4αS

3r
+ krCompare for  (colored):qq̄
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Energy Sources

• Fossil fuel (current ∼ 86%)

petroleum, coal, natural gas

– energy from the Sun stored in the past

– limited supply 40–400 years, environmental concerns

• Renewable energy (current ∼ 7%)

sunlight, wind, hydro, biomass (&wood, waste),..

– one way or another, mostly convert present Sun energy

• Nuclear energy (current ∼ 7%)

– uranium-235, plutonium-239 (fission)

– supply 100’s years (fission), safety concerns

– there is also fusion, but need technology

Andrei Gritsan, JHU LI January 2017
July 25, 2022



Energy Source: Sun as a ”Nuclear Reactor”

• Both fossil fuel and renewable energy

mostly pass energy from the Sun (past or present)

Sun – huge nuclear fusion reactor

supply: billions of years, 1 hour flux on Earth = 1 year demand

• Challenge with renewable energy technological:

collect enough Sun light

effectively convert and store collected energy

examples: photosynthesis by green plants;

solar power panels

beyond the scope of this discussion

Andrei Gritsan, JHU LII January 2017
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Sun as a ”Nuclear Reactor”

Andrei Gritsan, JHU LIII January 2017July 25, 2022
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Stable nuclide (nuclear species)

B(A, Z) = [Z(Mp + me) + (A − Z)Mn − M(A, Z)] ⋅ c2

Nuclear binding energy - key in understanding nuclear processes
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Sun as a ”Nuclear Reactor”
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Energy Source: Fuel

• combustion

burn fuel (carbon)

CH4 + 2 O2 → CO2 + 2 H2O + energy

(methane) + (oxygen) → (carbon dioxide) + (water)

• nuclear fission

n+ 235U → 92Kr + 141Ba+ 3 n + energy

• nuclear fusion

2H + 3H → 4He+ n + energy

• antimatter annihilation

1H+ (matter) + 1H− (antimatter) → energy

science fiction (e.g. see Angels and Demons with Tom Hanks)

Andrei Gritsan, JHU LVII January 2017
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Nuclear Energy: Present

• Nuclear fission reactor

Andrei Gritsan, JHU LIX January 2017July 25, 2022


