Quantum Physics

Andrei Gritsan

Johns Hopkins University

July 25, 2022
Johns Hopkins University
Johns Hopkins University QuarkNet Physics Workshop

Quantum Physics: Spin and Magnetic Moment

- Spin = Intrinsic angular momentum of a particle (system)

Classically: $\quad \vec{L}=\vec{r} \times \vec{p} \quad L=m$

- Magnetic moment $=$ current $(\mathrm{I}) \times$ loop areas (A)

$$
\begin{array}{lc}
\vec{\mu}=I \times \vec{A} & \mu=\frac{q v}{2 \pi r} \pi r^{2}=q v 2 \\
\mu=g \times \frac{q}{2 m} S & g \neq 1 \text { in } \mathrm{QM}
\end{array}
$$

Quantum Physics: Stern-Gerlach experiment

1922 (100 years!)

Atom, outer electron interaction energy: $\quad E=-\vec{\mu} \cdot \vec{B}$

$$
\begin{aligned}
& F_{z}=\frac{\partial}{\partial z}(\vec{\mu} \cdot \vec{B})=\mu_{z} \frac{\partial B_{z}}{\partial z} \\
& \mu_{z}=g \times \frac{q}{2 m} S_{z} \Rightarrow S_{z}= \pm \frac{\hbar}{2} \text { electron }
\end{aligned}
$$

Quantum Physics: Spin of Electron

electron $S_{z}= \pm \frac{\hbar}{2} \quad$ quantization!

Planck's constant

$$
\hbar=\frac{h}{2 \pi}=6.5821 \times 10^{-16} \mathrm{eV} \cdot s
$$

electron's spin

$$
S=\frac{\hbar}{2} \quad S_{z}= \pm \frac{\hbar}{2}
$$

Foundation of Quantum Physics!

Spin of Elementary Particles

- Until recently, all elementary particles were of two types:

$S=\frac{\hbar}{2}$

Fermions (half-integer spin) occupy space (Fermi statistics: exclusion princ.) constitute matter (quarks, leptons)

$$
S=1 \hbar
$$

Bosons (integer spin) carry interactions (γ photons, g gluons, $W^{ \pm}, Z$)

- One can create compose particles of any spin $S=\frac{N \hbar}{2}, N=0,1,2, .$. for example π^{0} meson made of $q \bar{q}$ has $S=0$ but there was no elementary particle with no spin, until $2012 \ldots$

Spin of the Higgs boson?

- Spin $=0$

2012 (10 years!)

The Nobel Prize 2013

The Nobel Prize in Physics 2013

Evolution of the signal for the new particle in 2011 and 2012
https//iwiki.cem.ch/wikibin'view/CMSPPublic/Hig 13002TWik
ONobelprize.org

- The only known elementary particle with no spin !
- how do we know it has no spin?

Spin of the Higgs boson?

- Spin = 0 from observing H decay:

Spin of elementary particles

- Spin $=0$

- $\operatorname{Spin}=\hbar$
- $\operatorname{Spin}=\frac{3 \hbar}{2}$

Not known
(may be supersymmetric particle, e.g. gravitino)

- Spin $=2 \hbar \quad$ Not discovered, expect graviton
- Arguments for higher Spin to be composite particles...

Two events in July

- July 4, 2022 Symposium at CERN to celebrate 10 years of H boson
- local JHU article on the topic

Two events in July

- July 4, 2022 Symposium at CERN to celebrate 10 years of H boson
- local JHU article on the topic

June 14, 2012, CERN

July 4, 2022, CERN

Two events in July

Two events in July

- July, 2022 Community Summer Study in Seattle ("Snowmass")

Community Summer Study SN 89 WMASS July 17-26 2022, Seattle

- Big questions and big facilities
- next Higgs factory ???
- Followup to Snowmass 2001 Snowmass 2013...

Back to Quantum Physics: Time Evolution

Non-relativistic energy expression:

$$
E=\frac{\vec{p}^{2}}{2 m}+V
$$

Quantum prescription: $\quad E \rightarrow i \hbar \frac{\partial}{\partial t}$

$$
\vec{p} \rightarrow-i \hbar \vec{\nabla}=-i \hbar\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)
$$

Schrodinger equation, for a wave function $\psi(t, x, y, z)$

$$
E \psi=\frac{\vec{p}^{2}}{2 m} \psi+V \psi
$$

$$
i \hbar \frac{\partial}{\partial t} \psi=-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi+V \psi
$$

Quantum Physics: Hydrogen Atom

$$
i \hbar \frac{\partial}{\partial t} \psi=-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi+V \psi
$$

special case:

$$
V(x, y, z, t)=V(r)=-\frac{e^{2}}{4 \pi \epsilon_{0} r}
$$

solve in spherical coordinates:

$$
\left(-\frac{\hbar^{2}}{2 \mu} \nabla^{2}-\frac{e^{2}}{4 \pi \varepsilon_{0} r}\right) \psi(r, \theta, \varphi)=E \psi(r, \theta, \varphi)
$$

Quantum Physics: Hydrogen Atom

$$
-\frac{\hbar^{2}}{2 \mu}\left[\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \psi}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \psi}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} \psi}{\partial \varphi^{2}}\right]-\frac{e^{2}}{4 \pi \varepsilon_{0} r} \psi=E \psi
$$

$$
\psi(r, \theta, \varphi)=R(r) \Theta(\theta) \Phi(\varphi)
$$

Quantum numbers: n, ℓ, m

$$
\psi_{n, \ell, m}(r, \theta, \varphi) \propto R_{n, \ell}(r) Y_{\ell, m}(\theta, \varphi)
$$

principal quantum number: $n=1,2,3, \ldots$
orbital angular momentum: $\ell=0,1,2,3, \ldots<n$
projection of angular momentum: $m=-\ell,(-\ell+1), \ldots, 0, . .,(\ell-1), \ell$

Quantum Physics: Hydrogen Atom

$$
\begin{gathered}
\psi_{n, \ell, m}(r, \theta, \varphi) \propto R_{n, \ell}(r) Y_{\ell, m}(\theta, \varphi) \\
|m| \leq \ell=0,1,2,3, \ldots<n
\end{gathered}
$$

$$
E_{n}=-\frac{\hbar^{2}}{2 m a_{0}} \frac{1}{n^{2}}
$$

$$
n=1,2,3, \ldots
$$

Probability to find electron in (r, θ, φ)

$$
\left|\psi_{n, \ell, m}(r, \theta, \varphi)\right|^{2} \quad \text { ground state } R_{1,0}(r) \propto e^{-r / a_{0}}
$$

$$
\begin{aligned}
& Y_{0}^{0}(\theta, \varphi)=\frac{1}{2} \sqrt{\frac{1}{\pi}} \\
& Y_{1}^{-1}(\theta, \varphi)=\frac{1}{2} \sqrt{\frac{3}{2 \pi}} \sin \theta e^{-i \varphi} \\
& Y_{1}^{0}(\theta, \varphi)=\frac{1}{2} \sqrt{\frac{3}{\pi}} \cos \theta \\
& Y_{1}^{1}(\theta, \varphi)=\frac{-1}{2} \sqrt{\frac{3}{2 \pi}} \sin \theta e^{i \varphi} \\
& Y_{2}^{-2}(\theta, \varphi)=\frac{1}{4} \sqrt{\frac{15}{2 \pi}} \sin ^{2} \theta e^{-2 i \varphi} \\
& Y_{2}^{-1}(\theta, \varphi)=\frac{1}{2} \sqrt{\frac{15}{2 \pi}} \sin \theta \cos \theta e^{-i \varphi} \\
& Y_{2}^{0}(\theta, \varphi)=\frac{1}{4} \sqrt{\frac{5}{\pi}}\left(3 \cos ^{2} \theta-1\right) \\
& Y_{2}^{1}(\theta, \varphi)=\frac{-1}{2} \sqrt{\frac{15}{2 \pi}} \sin \theta \cos \theta e^{i \varphi} \\
& Y_{2}^{2}(\theta, \varphi)=\frac{1}{4} \sqrt{\frac{15}{2 \pi}} \sin ^{2} \theta e^{2 i \varphi}
\end{aligned}
$$

Atomic Physics

Quantum Physics: Atoms

- Particles (electrons) occupy the lowest energy states
- No two identical particles (electrons) may have the same set of quantum numbers $\left(n, l, m, s_{z}\right)$
(Pauli exclusion principle)

$$
|m| \leq \ell=0,1,2,3, \ldots<n
$$

$$
s_{z}= \pm \frac{\hbar}{2}
$$

Quantum Physics: Atoms

Periodic Table of Elements Showing Electron Shells

Atomic / Nuclear Physics

https://pdg.lbl.gov/2020/reviews/rpp2020-rev-periodic-table.pdf

$\begin{array}{r} 1 \\ \mathrm{IA} \end{array}$																	$\begin{gathered} 18 \\ \text { VIIIA } \end{gathered}$
1 H hydrogen 1.008	$\begin{gathered} 2 \\ \text { IIA } \end{gathered}$											$\begin{array}{r} 13 \\ \text { IIIA } \end{array}$	$\begin{array}{r} 14 \\ \text { IVA } \end{array}$	$\begin{aligned} & 15 \\ & \text { VA } \end{aligned}$	$\begin{gathered} 16 \\ \text { VIA } \end{gathered}$	$\begin{gathered} 17 \\ \text { VIIA } \end{gathered}$	2 He helium 4.002602
3 Li lithium 6.94	4 Be beryllium 9.012182	PERIODIC TABLE OF THE ELEMENTS										5 boron 10.81	6 carbon 12.0107	7 N nitrogen 14.007	$8 \quad$ O oxygen 15.999 16	9 F fluorine 18.998403163$\|$	10 Ne neon 20.1797
$11 \quad \mathrm{Na}$ sodium 22.98976928	$12 \quad \mathrm{Mg}$ magnesium 24.305	$\begin{gathered} 3 \\ \text { IIIB } \end{gathered}$	$\begin{gathered} 4 \\ \text { IVB } \end{gathered}$	$\begin{gathered} 5 \\ \text { VB } \end{gathered}$	$\begin{gathered} 6 \\ \text { VIB } \end{gathered}$	$\begin{gathered} 7 \\ \text { VIIB } \end{gathered}$	8	$\begin{gathered} 9 \\ -\quad \text { VIII } \end{gathered}$	$\begin{array}{r} 10 \\ -\quad \end{array}$	$\begin{aligned} & 11 \\ & \mathrm{IB} \end{aligned}$	$\begin{gathered} 12 \\ \text { IIB } \end{gathered}$	13 AI aluminum 26.9815385	$14 \quad$ Si silicon 28.085	$15 \quad \mathrm{P}$ phosphorus 30.973761998	$16 \quad \mathrm{~S}$ sulfur 32.06	$\begin{gathered} 17 \quad \mathrm{Cl} \\ \text { chlorine } \\ 35.45 \end{gathered}$	$\begin{gathered} 18 \quad \mathrm{Ar} \\ \text { argon } \\ 39.948 \end{gathered}$
$19 \quad \mathrm{~K}$ potassium 39.0983	$20 \quad \mathrm{Ca}$ calcium 40.078	21 Sc scandium 44.955908	$22 \quad \mathrm{Ti}$ titanium 47.867	$23 \quad \mathrm{~V}$ vanadium 50.9415	$24 \quad \mathrm{Cr}$ chromium 51.9961	$\|$25 Mn manganese 54.938044	$26 \quad \mathrm{Fe}$ iron 55.845	$27 \quad$ Co cobalt 58.933195	$28 \quad \mathrm{Ni}$ nickel 58.6934	$29 \quad \mathrm{Cu}$ copper 63.546	$\begin{gathered} \hline 30 \quad \mathrm{Zn} \\ \text { zinc } \\ 65.38 \\ \hline \end{gathered}$	31 Ga gallium 69.723	32 Ge germanium 72.630	$33 \quad$ As arsenic 74.921595	$34 \quad \mathrm{Se}$ selenium 78.971	35 Br bromine 79.904	$36 \quad \mathrm{Kr}$ krypton 83.798
37 Rb rubidium 85.4678	$38 \quad \mathrm{Sr}$ strontium 87.62	$39 \quad \mathrm{Y}$ yttrium 88.90584	$40 \quad Z r$ zirconium 91.224	$41 \quad \mathrm{Nb}$ niobium 92.90637	42 Mo molybdenum 95.95	43 Tc technetium (97.907212)	44 $R u$ ruthenium 101.07	45 $R h$ rhodium 102.90550	46 Pd palladium 106.42	$47 \quad \mathrm{Ag}$ silver 107.8682	$48 \quad \mathrm{Cd}$ cadmium 112.414	$49 \quad \ln$ indium 114.818	50 Sn tin 118.710	$51 \quad \mathrm{Sb}$ antimony 121.760	$52 \quad \mathrm{Te}$ tellurium 127.60	$\begin{gathered} \hline 53 \quad \text { I } \\ \text { iodine } \\ 126.90447 \\ \hline \end{gathered}$	54 Xe xenon 131.293
$55 \quad \mathrm{Cs}$ caesium 132.90545196	$56 \quad \mathrm{Ba}$ barium 137.327	$57-71$ LANTHA- NIDES	$72 \quad \mathrm{Hf}$ hafnium 178.49	$73 \quad \mathrm{Ta}$ tantalum 180.94788	74 W tungsten 183.84 	75 $R e$ rhenium 186.207	$76 \quad$ Os osmium 190.23	$77 \quad$ Ir iridium 192.217	78 Pt platinum 195.084	79Au gold 196.966569	$80 \quad \mathrm{Hg}$ mercury 200.592	81 TI thallium 204.38	82 Pb lead 207.2	83 Bi bismuth 208.98040	84 Po polonium (208.98243)	85 At astatine (209.98715)	86 Rn radon (222.01758) $\|$
$87 \quad \mathrm{Fr}$ francium (223.01974)	$\|$88 Ra radium (226.02541)	$\begin{gathered} \hline 89-103 \\ \text { ACTINIDES } \end{gathered}$	104 $R f$ rutherford. (267.12169)	105 Db dubnium (268.12567)	106 Sg seaborgium (269.12863)	107 Bh bohrium (270.13336)	108 Hs hassium (269.13375)	$\left.\begin{array}{\|cc\|}\hline 109 & \mathrm{Mt} \\ \text { meitnerium } \\ (278.1563)\end{array}\right]$	110 Ds darmstadt. (281.1645)	$\begin{array}{\|cc\|} \hline 111 & \mathrm{Rg} \\ \text { roentgen. } \\ (282.16912) \end{array}$	$112 \quad \mathrm{Cn}$ copernicium (285.17712)	113 nihonium (286.18221)	$114 \quad$ FI flerovium $(289.19042$	$115 \quad$ Mc moscovium (290.19598)	116 Lv livermorium $(293.20449$	$117 \quad \mathrm{Ts}$ tennessine (294.2105)	118 Og oganesson (294.21392)

$57 \quad$ La	58 Ce	$59 \quad \operatorname{Pr}$	60	61	62 Sm	63	64 Gd	65	66 Dy	67	68 Er	69		$71 \quad \mathrm{Lu}$
lanthanum	cerium	praseodym.	neodymium	promethium	samarium	europium	gadolinum	erbium	dysprosium	holmiu	biu	huliu	ytterbium	lute
138.9054	140.116	140.90766	144.242	(144.91276)	150.36	151.964	157.25	158.92535	162.500	164.93033	167.259	168.93422	173.054	174.96

 actinium thorium protactinium uranium neptunium plutonium americium curium berkelium californium einsteinium fermium mendelevium nobelium lawrencium

Atomic Physics

- Particles (electrons) occupy the lowest energy states

- No two identical particles (electrons) may have the same set of quantum numbers $\left(n, \ell, m, s_{z}\right)$
(Pauli exclusion principle)

$$
\begin{aligned}
& |m| \leq \ell=0,1,2,3, \ldots<n \\
& s_{z}= \pm \frac{\hbar}{2}
\end{aligned}
$$

$\psi_{n, \ell, m}(r, \theta, \varphi) \propto R_{n, \ell}(r) Y_{\ell, m}(\theta, \varphi)$
principal quantum number: $n=1,2,3, \ldots$
orbital angular momentum: $\ell=0,1,2,3, \ldots<n$ projection of angular momentum: $m=-\ell,(-\ell+1), \ldots, 0, . .,(\ell-1), \ell$

Nuclear Physics

Nuclear binding energy

$$
B(A, Z)=\left[Z\left(M_{p}+m_{e}\right)+(A-Z) M_{n}-M(A, Z)\right] \cdot c^{2}
$$

© 2012 Encyclopædia Britannica, Inc.

Abundance of the chemical elements on Earth

Stable nuclide (nuclear species)

Types of decay (weak force)

Types of decay (strong force)

Types of decay

Fission

Fission

Chain reaction

Nature of Nuclear Force

Nuclear binding energy - key in understanding nuclear processes

$$
B(A, Z)=\left[Z\left(M_{p}+m_{e}\right)+(A-Z) M_{n}-M(A, Z)\right] \cdot c^{2}
$$

Nuclear force - based on strong force, but works differently than binding force of quarks and baryons no strong or EM force at large distance

neutron
color-neutral charge-neutral

Nature of Nuclear Force

Nuclear binding energy - key in understanding nuclear processes

$$
B(A, Z)=\left[Z\left(M_{p}+m_{e}\right)+(A-Z) M_{n}-M(A, Z)\right] \cdot c^{2}
$$

strong force attraction and repulsion at shorter distances:

Nature of Nuclear Force

Particle Physics perspective:

quark exchange

Nature of Nuclear Force

Yukawa potential at larger distances:
neutron

proton

Compare for $q \bar{q}$ (colored): $\quad V_{\mathrm{QCD}}(r)=-\frac{4 \alpha_{S}}{3 r}+k r$

Nuclear Energy

Energy Sources

- Fossil fuel (current ~86\%)
petroleum, coal, natural gas
- energy from the Sun stored in the past
- limited supply 40-400 years, environmental concerns
- Renewable energy (current $\sim 7 \%$)
sunlight, wind, hydro, biomass (\&wood, waste),..
- one way or another, mostly convert present Sun energy
- Nuclear energy (current $\sim 7 \%$)
- uranium-235, plutonium-239 (fission)
- supply 100's years (fission), safety concerns
- there is also fusion, but need technology

Energy Source: Sun as a "Nuclear Reactor"

- Both fossil fuel and renewable energy
mostly pass energy from the Sun (past or present)
Sun - huge nuclear fusion reactor
supply: billions of years, 1 hour flux on Earth $=1$ year demand
- Challenge with renewable energy technological:
collect enough Sun light
effectively convert and store collected energy
examples: photosynthesis by green plants; solar power panels
beyond the scope of this discussion

Sun as a "Nuclear Reactor"

Stable nuclide (nuclear species)

Nuclear binding energy - key in understanding nuclear processes $B(A, Z)=\left[Z\left(M_{p}+m_{e}\right)+(A-Z) M_{n}-M(A, Z)\right] \cdot c^{2}$

Sun as a "Nuclear Reactor"

Energy Source: Fuel

- combustion
burn fuel (carbon)
$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+$ energy
(methane) + (oxygen) \rightarrow (carbon dioxide) + (water)
- nuclear fission

$$
n+{ }^{235} U \rightarrow{ }^{92} \mathrm{Kr}+{ }^{141} \mathrm{Ba}+3 n+\text { energy }
$$

- nuclear fusion

$$
{ }^{2} H+{ }^{3} H \rightarrow{ }^{4} \mathrm{He}+n+\text { energy }
$$

- antimatter annihilation
${ }^{1} H^{+}$(matter) $+{ }^{1} H^{-}$(antimatter) \rightarrow energy
science fiction (e.g. see Angels and Demons with Tom Hanks)

Nuclear Energy: Present

- Nuclear fission reactor

