
WHAT HEISENBERG KNEW 

TEACHER NOTES 

 

DESCRIPTION 
Werner Heisenberg proposed the uncertainty principle, one of the foundational concepts of quantum 

physics, in 1927. Heisenberg proposed that there are pairs of complementary variables which are 

fundamental quantities of nature. For complementary variables, the greater the precision in the 

measurement of one variable, the less the precision in the measurement of the other variable. This 

give-and-take is not from experimental systematics but is part of the very nature of the act of 

measuring the variables. The best known and most important of these complementary pairs are 

momentum-position and energy-time. This activity takes an empirical approach to these pairs. 

Students plot measurements of uncertainty in one variable, e.g., momentum (p), as a function of 

uncertainty in the other variable, e.g., position (x), and use these plots to discover relationships 

between the variables. 

STANDARDS ADDRESSED 
Next Generation Science Standards  

Disciplinary Core Ideas – Physical Science 

PS1.A: Structure and Properties of Matter 

PS2.B: Types of Interactions 

Science and Engineering Practices 

2. Developing and Using Models 

4. Analyzing and Interpreting Data 

5. Using Mathematics and Computational Thinking 

7. Engaging in Argument from Evidence 

8. Obtaining, Evaluating, and Communicating Information 

Crosscutting Concepts 

1. Patterns  

2. Cause and Effect: Mechanism and Explanation  

3. Scale, Proportion, and Quantity  

4. Systems and System Models 

Common Core Literacy Standards 

Reading  

9-12.4 Determine the meaning of symbols, key terms . . .  

9-12.7 Translate quantitative or technical information . . .  

Common Core Mathematics Standards 

MP2. Reason abstractly and quantitatively. 

AP Physics 1: Algebra-Based and AP Physics 2: Algebra-Based Science Practices 

Science Practice 4 

The student can plan and implement data collection strategies in relation to a particular 

scientific question. 

Science Practice 5 

The student can perform data analysis and evaluation of evidence. 

IB Physics  

Topic 1: Measurement and Uncertainties 

1.2.6 Describe and give examples of random and systematic errors. 

1.2.7 Distinguish between precision and accuracy. 



1.2.8 Explain how the effects of random errors may be reduced. 

1.2.11 Determine the uncertainties in results. 

Topic 12: Quantum and Nuclear Physics 

12.1: The interaction of matter with radiation 

ENDURING UNDERSTANDING 
Scientists must account for uncertainty in measurements when reporting results. 

LEARNING OBJECTIVES  
Students will know and be able to: 

 Make plots of data showing uncertainty in the complementary variables. 

 Manipulate data to create straight-line plots and thus create a mathematical model of the 

relationship between complementary variables.  

 Explain the uncertainty principle from empirical evidence. 

PRIOR KNOWLEDGE 
Students should be able to: 

 Graph from a table. 

 Manipulate data to “linearize” a graph. 

 Describe a diffraction pattern. 

BACKGROUND MATERIAL 
Werner Heisenberg (1901–1976) was one of the most important physicists in the formation of 

quantum mechanics. In 1927, he proposed the uncertainty principle. It stated that pairs of 

complementary variables in physics had minimal measurement uncertainties based on a relationship 

with each other: less uncertainty in one inevitably yields greater uncertainty in the other, no matter 

how sophisticated the measurement technique.  

One way to explain the complementary nature of momentum and position is in terms of wave-

particle duality. Imagine that we want to measure the momentum and position of a moving particle 

that we will call the "target." To do this, we fire a "projectile" with some momentum of its own at 

the target particle. If the momentum of the projectile is small, it will have only a small effect on the 

momentum of the target. See Figure 1 below.  

 

Figure 1: Relationship between momentum and de Broglie wavelength. 

When the projectile has a low momentum, as shown in the left picture of Figure 1, the momentum 

of the target is changed by only a small amount. The projectile bounces back to our detector and its 

recoil gives us a good idea of the momentum of the target. But, with a low momentum, the 

projectile has a large de Broglie wavelength. Thus, any measurement of position the projectile 

makes has a high uncertainty. To improve the position measurement, we can decrease the  



de Broglie wavelength only by increasing the momentum of the projectile, as shown in the right 

picture of Figure 1. But if the projectile momentum is greater, then the projectile has a greater effect 

on the momentum of the target particle, making the momentum measurement less precise. Thus, 

“you can’t win” at a fundamental level. Or at least you cannot totally win: the uncertainty principle 

quantifies the closest you can come to winning for complementary variables. 

In this activity, students discover this relationship from empirical data on momentum uncertainty 

and position uncertainty for hot fullerene molecules passing through a series of slits of variable 

width. Done by Olaf Nairz, Markus Arndt, and Anton Zeilinger in 2001, this experiment confirmed 

the uncertainty principle. As shown in Figure 2 below, the molecules passed through narrow slits of 

variable width (x). Because the molecules were quantum objects, their de Broglie wavelengths 

caused diffraction, meaning that individual molecules would have seemingly random individual 

paths after passing through the slit which would, statistically, match a diffraction pattern.  

 
Figure 2: Experimental setup made by Nairz, Arndt, and Zeilinger, 2001, 

https://arxiv.org/abs/quant-ph/0105061. 

Measurement of the slit width yields the uncertainty in position. Measurement of the width, or 

angular spread, of the central maximum of this pattern yields the uncertainty in momentum (p). 

Their results were plotted in Figure 3 below. Your students have a table of data taken from the plot. 

 
Figure 3: Results of experiment by Nairz, Arndt, and Zeilinger, from their paper,  

https://arxiv.org/abs/quant-ph/0105061. 

Your students reproduce the plot but also make a straight-line plot of p vs. 1/x to establish the 

relationship p ∝ 1/x or px = constant. In reality, px is greater than or equal to a quantity 

https://arxiv.org/abs/quant-ph/0105061
https://arxiv.org/abs/quant-ph/0105061


related to Planck’s constant. Finding the value of the proportionality constant is not a goal of this 

activity.  

RESOURCES/MATERIALS 

The links below are useful resources: 

 Georgia State University HyperPhysics, Particle lifetimes from the uncertainty principle, 

http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/parlif.html  

 Olaf Nairz, Markus Arndt, and Anton Zeilinger, Experimental verification of the Heisenberg 

uncertainty principle for fullerene molecules, Phys. Rev. A 65, 032109, 5 February 2002, 

https://arxiv.org/abs/quant-ph/0105061 

 Particle Data Group, Review of Particle Physics, http://pdg.lbl.gov/ 

 Wikipedia, Uncertainty principle, https://en.wikipedia.org/wiki/Uncertainty_principle 

 Wikipedia, Werner Heisenberg, https://en.wikipedia.org/wiki/Werner_Heisenberg 

Data tables 

Materials for making a graph or software for graphical analysis 

IMPLEMENTATION 

Divide your students into groups of 2–3. Give each group the student pages. 

Part 1: 

Data Table A has the hot fullerene data for p and x. Advise your students to plot p on the 

vertical axis and x on the horizontal axis as shown in Figure 4.  

Data Table A: Complementary Variables Momentum (p) and Position (x) 

Uncertainty in  Uncertainty in Reciprocal 

Position, x Momentum, p 1/x 

(micrometers) (x 10-27 kg-m/s) (1/ µm) 

0.09 9.6  

0.28 2.8  

0.46 1.3  

0.65 1.0  

1.36 0.5  

2.52 0.3  

 
Figure 4: Plot of p vs. x. 

When linearizing data for an inverse graph, the inverted variable can be on the vertical or horizontal 

axis. Plotting p and 1/x allows units for the slope that are easier to interpret. See Figure 5.  

http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/parlif.html
https://arxiv.org/abs/quant-ph/0105061
http://pdg.lbl.gov/
https://en.wikipedia.org/wiki/Uncertainty_principle
https://en.wikipedia.org/wiki/Werner_Heisenberg


 
Figure 5: Linearized plot of p vs. 1/x. 

The mathematical model for this linearized data follows: 

∆𝑝 = 𝑠𝑙𝑜𝑝𝑒 ∗
1

∆𝑥
 

∆𝑝∆𝑥 = 𝑠𝑙𝑜𝑝𝑒 

ASSESSMENT 
You can assess this activity using formative assessment in which each group makes a whiteboard 

presentation of their graphs and makes claims about how well the data supports the claim that  

p and x are complementary variables. Another approach is a class discussion. 

For summative assessment, you can use the data provided in Table B from the Particle Data Group 

Review of Particle Physics (PDG) to compare the widths of mass plot resonances of selected 

mesons with the lifetimes of the mesons. Since mass has an energy equivalent, the resonance width 

is a stand-in for uncertainty in energy, E, and the lifetime for uncertainty in time, t. Note: Some 

of the meson “data” is simulated to fill out the data table. Students analyze the data in the same way 

they do the hot fullerene data but this time for E and t. 

Research Question: 

Are energy and time complementary variables? 

Data Table B has the lifetime mass plot data for E and t. 

Data Table B: Complementary Variables Energy (E) and Time (t) 

 Uncertainty in  Uncertainty in  Reciprocal 

 Energy, E Time (lifetime), t 1/t 

Meson Name (keV) (x 10-24 s) (x 1024/s) 

sim1 20 33000  

sim2 40 16000  

upsilon 54 13000  

J/Psi 93 8000  

sim3 135 4900  

f-prime 196 3360  

Source for actual mesons upsilon, J/Psi, and f-prime: Particle Data Group, Review of Particle 

Physics, http://pdg.lbl.gov/ 

http://pdg.lbl.gov/


Source for sim calculations: Georgia State University HyperPhysics, Particle lifetimes from the 

uncertainty principle, http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/parlif.html 

Student Instructions: 

Make a claim about whether energy and time are complementary variables. Justify your claim with 

evidence and reasoning. 

Assessment Scoring: 

● Plot E vs t. 

 

● Describe the shape of the graph.  

o The shape of the t vs. E graph shows an inverse relationship. 

● Make a claim about what happens to t when E increases. 

o As E increases, t decreases. 

● Determine the necessary steps to linearize the graph. 

o When linearizing the data for an inverse graph, the inverted variable can either be on 

the vertical or the horizontal axis. Plotting t and 1/E allows for units for the slope 

that are easier to interpret. A sample plot is shown below. 

 

● Determine the mathematical model described by the linearized graph. 

○ The mathematical model for this linearized data follows: 

∆𝑡 = 𝑠𝑙𝑜𝑝𝑒 ∗
1

∆𝐸
 

∆𝑡∆𝐸 = 𝑠𝑙𝑜𝑝𝑒 

● Validity of claims, evidence and reasoning:  

○ The student cites the shape of the graph t vs. E as evidence of an inverse 

relationship. 

○ The student correctly determines the equation of the t and 1/E as shown above. 

○ The student makes the claim that t and E are complementary variables. 

○ The student concludes that the Heisenberg uncertainty principle applies to the 

complementary variables t and E. 

http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/parlif.html

