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ABSTRACT 

Analogous to the classical situation of a spring connected to a ball and forced into a continuous 
periodic motion, a harmonic oscillator is a system in which an object is moved in an oscillatory 
fashion towards a center by a restoring force whose magnitude varies with position. This 
problem is generally modeled by solving an equation describing a particle's state developed by 
the Schrödinger. The results of this method have been repeatedly proven, both theoretically and 
experimentally, to be correct; however, the calculations are complex and time consuming. The 
much simpler Bohr-Sommerfield approximation has been shown to provide the same results for 
a certain system. We proceeded to use the approximation on oscillators of different non-zero 
potentials to test whether the results are consistent with the Schrödinger Equation.  

 

I. Introduction 

Quantum Mechanics is a realm of physics very different than the definite, continuous world we 
are used to. Through the works of many minds, the modern theory of quantum mechanics 
surfaced, based in the fundamental mathematical structures developed independently by Werner 
Heisenberg and Erwin Schrödinger. Despite the accuracy of the results given by this method, the 
complex nature of quantum mechanics still remains its biggest drawback. One way to challenge 
this is by modifying simpler methods to achieve the same results. Bohr proposed that the 
electrons in atoms could only exist in certain well-defined, stable orbits, which satisfied the 
Bohr-Sommerfield quantization condition, 

 



Where p is the momentum and x is the position coordinate of an electron in three-dimensional 
space; the integral is performed over some closed orbit in space {p, x}. Considering the electron 
as a wave with wavelength λ = h/p, this Bohr-Sommerfield quantization condition ensures that 
the wave is described by a function that is single-valued. 

The energy of an oscillator is given by the equation 

 

The simplest example of an oscillator would be the case in which the potential V(x) is zero. This 
would be a box in which a particle collides with a wall, meets an infinite potential and returns in 
the opposite direction with the same magnitude of momentum until it meets another similar wall. 
This situation is known as the infinite square well with magnitude of momentum p given by 

 

The Bohr-Summerfield approximation is based on a realization that the units of plank's constant 
can be interpreted in a different manner. The units of plank’s constant h are 

 

Where the units of a joule are 

 

It is apparent that the units of plank’s constant are equivalent to momentum multiplied by 
distance 

 

This suggests that the integral of the momentum between the walls would be equivalent to 
plank's constant times a constant 

 

It is an assumption related to the quantized nature of the miniscule world that the values of n will 
be whole numbers. Rearranging the equation to solve for the energy gives the result: 

 

To verify the result received by the Bohr-Summerfield method, the problem must be solved 
rigorously. The energy of the particle can be derived most accurately by using the Schrödinger 
equation. 



 

Since the particle does not have potential energy while traversing the region between the two 
walls, V(x)=0. 

 

Rearranging the equation gives us 

 

Since it is a second order differential equation, the wave function, ψ, will be of the form 

 

 

Using the fact that at the boundaries ψ is zero, the coefficient B must be zero, leaving 

 

Since at the boundary, a distance L from the origin, has a zero value of ψ: 

 

For ψ to be equal to zero, either A must be zero, or sin must be taken of a multiple of π. Since the 
first would be a trivial, uninformative solution, the former is taken. Thus the following equation 
holds true 

 

�	is defined in the following way 

 

So, solving for energy yields 



 

This is the definite quantum mechanical result. 

The two methods arrive at exactly the same results for the simplest harmonic oscillator in the 
case of the potential energy function equating to zero when not at the barriers. Since the Bohr-
Sommerfield method is mathematically simpler, it is natural to ask if this method, when 
modified, works for other particle systems with non-zero potential.  

Firstly, the momentum is derived from the total energy and the potential. 

 

The integral is then be generalized to 

 

Where x1 and x2 are the end points, which can be found by solving for the positions where the 
momentum is zero. We assume that the momentum must be purely real. 

To check whether or not the method holds for different functions of potential, the values for E in 
which n is an integer, calculated by using the Bohr-Summerfield method, are compared to the 
values given by the Schrödinger equation. In the calculations, � is equal to 1 to simplify the 
problem. Thus, h=2π. Solving the equation for n, we get 

 

II. Calculations and Results 

To calculate the results given by the Bohr-Sommerfield method, a program in Java using Eclipse 
was created with the following steps, with an accuracy of 5 decimal places. 

1. Use Newton’s method to approximate roots when V(x)=E 

2. Loop through different E values 

3. Integrate using mid-point approximation with roots as bounds 

4. Check to see if value returned is an integer with an accuracy function 

 

Using this program we calculated Energy level values for various different particle systems with 
non-zero potential. 

 



Example 1 

For the potential V(x), 

 

When plugged into the equation, and making the assumption that m=1, we end up with the 
integral, 

 

After running the program, the results we get for this particle system are 

 

We can see the general trend of E=n which is also consistent with Schrödinger’s wave equation 
result. 

 

Example 2 

For the potential V(x), 

 

When plugged into the equation, and making the assumption that m=1, we end up with the 
integral, 

 

After running the program, the results we get for this particle system are 

 



 

However, when compared to the results given by the Schrödinger’s wave equation (shown 
below) we see that these values are very different and leads us to believe that the Bohr-
Sommerfield method does not work for this particle system. 

 

III. Conclusion 

The Bohr-Sommerfield method fails to re-create the solutions given by Schrödinger’s wave 
equation when tested for different non-zero potentials with the exception of several simple 
functions such as V(x)=x^2/2. 

 

 

 


