Accelerators: what they are and how they work

M. Swartz

Accelerators

Physicists have been building accelerators since the 1850s

- H. Geissler creates gas discharge tubes using newly developed vacuum pump and various gases
 - currents of electrons and ions move through the tubes
- accelerators are still found everywhere but are becoming less common
 - fluorescent lighting [being replaced by led bulbs]
 - cathode ray tubes [being replaced by lcd screens]
 - x-ray machines are found in medical/dental offices
 - linear accelerators are found in nearly every large hospital

2

Lorentz Force

All accelerators are "engineering applications" of the same Lorentz force that we teach to students in intro E&M courses:

$$\frac{d\vec{p}}{dt} = \frac{d(\gamma m \vec{v})}{dt} = q \left[\vec{E} + \frac{1}{c} \vec{v} \times \vec{B} \right] \quad \gamma = \frac{1}{\sqrt{1 - (v/c)^2}}$$

- charges accelerate along the net electric field
 - gain/lose energy from work done by the E-field
- charges accelerate transversely to their direction in magnetic fields
 - no work done and therefore no energy gain/loss
- this form of the Lorentz force is relativistically covariant
 - works in all inertial frames
 - must use the relativistic definition of momentum $[w/\gamma$ factor]
- 1/c is present when using CGS units

Motion in uniform [dipole] B fields

⊗ B p

In uniform B fields, the charge moves in a circular orbit. Because the energy $[\gamma]$ does not change, we can write that for short time intervals:

Summing over many short intervals, we define the orbital period T as the time needed for the angle to reach 2π radians. It is also the ratio of the circumference and the speed,

$$T = \frac{\gamma m}{qB} 2\pi = \frac{2\pi R}{|\vec{v}|} \quad \rightarrow \quad R = \frac{|\vec{p}|}{qB}$$

at low energies [y~1], T depends only on q/m and B

 $|\Delta \vec{p}| = q |\vec{v}| |\vec{B}| \Delta t \quad \rightarrow \quad \theta \simeq \frac{|\Delta \vec{p}|}{|\vec{p}|} = \frac{qB}{\gamma m} \Delta t$

- at larger energies when the particle is relativistic, T is linear in γ
- the orbital radius increases linearly with p and decreases as 1/B

High Energy Accelerators

In the late 1920's, a number of physicists were searching for ways to artificially accelerate protons and other nuclei to energies larger than typical alpha sources:

- need protons of energies > few-10 MeV to overcome Coulomb repulsion in the nucleus and initiate nuclear reactions
- first accelerators were just parallel plate capacitors held at high potential

need very large (MegaVolt) potentials ... very difficult

- In 1926, Rolf Wideroe wrote a paper proposing a linear accelerator using an oscillationg field to accelerate charge particles multiple times with a lower potential:
 - only low voltages then available
 - needed to be quite long
 - ionized nuclei reach only 50 keV

- In January 1931, E.O. Lawrence shortens the Wideroe linear accelerator by magnetically bending particle trajectories in a circle
 - time to make 1/2 orbit is indep of E (NR)
 - reverse field across gap each 1/2 orbit
 - particle spirals to larger radius
 - 4.5" cyclotron achieves 80 keV
 - 11" cyclotron achieves 1.1 MeV August
 - 27" cyclotron achieves 3.6 MeV in 1932
 - 37" cyclotron finished in 1937, 60" in 1939

- 1929-1931, Van de Graff invents static high voltage generator:
 - reaches 2x750 kV
 - he is an engineer
 - not used to accelerate particles yet

- In 1932, Cockroft and Walton design a switched voltage amplifier
 - protons reach 800 keV
 - they do a PHYSICS experiment: $p + {}^{3}Li_{7} \not = 2 \times {}^{2}He_{4}$
 - discover artificial nuclear transmutation
 - win 1951 Nobel Prize

- Why do Cockcroft and Walton succeed with such a low energy?
 - because of Fermi momentum: caused by confinement of nucleons to a small volume (uncertainty principle):

 $p_F = (9\pi Z/4)^{1/3} \hbar/r_A$

- cm energy is increased by motion of target nucleons: overcomes the Coulomb barrier at lower projectile energy
- Why didn't Lawrence do this first?
 - he believed too much in theoretical predictions
 - he wasn't really interested in nuclear physics
 - he was interested in building bigger and better cyclotrons
- Why did the cyclotron work? It shouldn't have
 - beams should grow transversely and strike the vacuum chamber
 - dipole magnets have fringe fields which focus the beams

Accelerator Milestones

In roughly chronological order:

- high power microwave radar developed during WWII produces new powerful RF sources for post-war accelerators
- by late 1940's, cyclotrons are limited in energy by special relativity (1/2 orbit time is not independent of E):
 - modify RF frequency during acceleration cycle to keep the accelerating field synchronized to particles: Synchrocyclotron
 - trade off continuous low energy beam for pulsed higher energy beam
- build circular accelerator in which field is ramped as particles gain energy (keep orbit radius fixed): Synchrotron is developed in the 1950's (all modern circular accelerators are synchrotrons)
 - much less expensive and more flexible than cyclotrons
 - used to accelerate (and store) protons or electrons

Synchrotrons

The synchrotron is a ring made of discrete elements: think cyclotron but with the middle removed. In early synchrotrons, the bending magnets were designed to also focus the beam using the non-linear edge fields [like the cyclotron]. The strength of the focusing was limited and the beam sizes [and therefore machine apertures] were large. All later synchrotrons use dedicated magnetic lenses which can strongly focus the beam. The beams and apertures are much smaller. Smaller beams make colliding beam machines possible too.

Magnetic Lenses

Modern synchrotrons [and storage rings] use quadrupole magnets to focus the beam. A quadrupole magnet has two N pole faces and two S pole faces:

- the B-field vanished at the center of the magnet [by symmetry]
- the horizontal field increases with vertical distance y from the center
 - changes sign for y<0
- the vertical field increases with horizontal distance x from the center
 - changes sign for x<0

The field strength is characterized by a gradient G[T/m]. Assuming that the charged particle is traveling into the page [-z direction],

$$\vec{B} = G\left[y\hat{x} + x\hat{y}\right] \rightarrow \vec{F} = q\vec{v} \times \vec{B} = qG|\vec{v}|\left[x\hat{x} - y\hat{y}\right]$$

- this quadrupole focuses the beam vertically, defocuses horizontally
- can also change the polarity to focus horizontally, defocus vertically

Calculating the angular deflection passing through a magnet of length L,

$$\theta_x = \frac{\Delta p}{p} = \frac{qGvx}{\gamma mv} \Delta t = \frac{qGL}{\gamma mv} x = \frac{x}{f}, \quad f = \frac{p}{qGL}$$

The angular deflection is linear in \mathbf{x} : it looks like an optical lens with focal length \mathbf{f} !

In accelerators, quadrupole lenses are arranged so that they alternately focus (H)/defocus (V) and defocus(H)/focus(V). In each plane, the net effect is to focus.

Proof: consider two thin lenses of focal length f and separation D. The first is a defocusing lens and the second is a focusing lens. A thin lens changes the angle of a ray by $\pm x/f$. Let's consider a ray entering at x_1 with angle θ_1 . It propagates to the second lens and exits with angle θ_2 ,

$$x_{2} = x_{1} + D\left[\theta_{1} + \frac{x_{1}}{f}\right]$$

$$\theta_{2} = \theta_{1} + \frac{x_{1}}{f} - \frac{x_{2}}{f} = \theta_{1}\left[1 - \frac{D}{f}\right] - \frac{Dx_{1}}{f^{2}}$$

- D/f < 1 for any real system
- the output angle is always reduced by x_1/F ,
 - the doublet lens ALWAYS focuses with focal length $F=f^2/D$
- the same result follows from putting the focusing lens first

Higher order multipole magnets are used to correct chromatic and other aberrations. Sextapoles are inserted into places of high dispersion [different momenta are separated spatially] to correct the chromatic effects

- this level of control is not possible in the older machines with combined function magnets
- the design of an accelerator lattice is something of an art

LHC Magnet Lattice

To keep the beams from diffusing/wandering transversely, they are focused by a series of quadrupole lenses integrated into the magnet lattice

- A total of 858 quadrupoles focus the beams in both planes
 - quadrupole lenses are used in the final focii to demagnify the beams and being them into collision
- Sextapole and decapole magnets provide correction for aberrations
 - each fOdO cell is 100m long

RF Cavities

To use the new high power Radio Frequency sources [developed for Radar], need to use wave guides and cavities

- freely propagating EM waves have transverse E/B fields which won't accelerate charges
- use standing wave modes in RF cavities that have longitudinal E-fields
- make multiple passes through cavities to gain energy

Time the passage of the bunches of beam particles to coincide with maximum positive longitudinal electric field

- high energy applications use Klystron power amplifiers
- lower energy applications [eg medical accelerators] use magnetrons like your microwave oven

Each LHC proton beam passes through 2x4=8 RF cavities in each orbit

- each cavity: longitudinal e-field = 5 MV/m, eff len = 0.4m, f=400MHz
- gains T=8x2 Mev = 16 MeV/orbit

Linear Accelerators

 Wideroe's original idea is still in use to accelerate low energy protons and ions,

mid 1950's, the traveling wave linear accelerator is developed

- uses traveling axial electric field of waveguide
- particles "surf" along leading edge of traveling field
- works only for highly relativistic (v=c) particles [electrons]
- full acceleration in a single pass [not repeated transits of cavity]

An unmodified cylindrical waveguide cannot accelerate a highly relativistic particle

- the Phase Velocity v_{ph} > c
 - E-field won't stay synchronized with the traveling wave
 - fix by "loading" the waveguide with disks: slow v_{ph} to c
- the Group Velocity of the RF pulse $v_{gr} = 0.03c$
 - particles quickly "outrun" the RF pulse
 - feed the waveguide every few meters with a "fresh" pulse

Cross Section and Luminosity

Describing the rates of particle collisions relies on the concepts of luminosity and cross section

- measured in inverse area per second
- the design luminosity of the LHC is 1×10^{34} cm⁻²s⁻¹
- design energy of the LHC is 14 TeV
- actual energy/luminosity of the LHC are 13 TeV/1.2×10³⁴ cm⁻²s⁻¹

Center of Mass Energy

The center of mass energy of the beam and target particle determine how much energy is available to produce new (interesting) states. The E_{cm} of a collision

- for fixed target collisions, the E_{cm} scales as $(E_b)^{1/2}$
 - for $E_b = 6500 \text{ GeV}$, $E_{cm} = 110 \text{ GeV}$
- for collisions of 2 accelerated beams, the E_{cm} scales as E_b - for E_b = 6500 GeV, E_{cm} = 13000 GeV

Huge energy advantages when colliding 2 accelerated beams! Huge luminosity penalty due to low target density $(\sim 10^5)!$

Colliding Beam Accelerators

Beginning in the 1960s, colliding beam machines were developed to push the energy frontier

- earliest machines collided e-e- and e+ebeams
 - e+e- is probably the most valuable technique ever developed in HEP
 - lower energy but "clean" initial state
- 1970s-1980s pp and p-pbar colliding beam accelerators are developed
 - Tevatron at Fermilab is p-pbar @
 E_{cm} = 2 TeV
 - LHC operating at CERN is p-p @ Ecm
 = 13 TeV
 - higher energy but "dirty" initial state ... more reach but higher backgrounds

The Present

~14 TeV Large Hadron Collider is now operating at CERN near Geneva.

- chain of 5 accelerators: cockroft-walton, linac, 3 synchrotrons
- supports 2 major colliding beam experiments: Atlas + CMS
- supports 2 smaller experiments: Alice + LHCb

The Present

The Longer Future

- There is international interest in building a ~1 TeV linear e+e- collider called the International Linear Collider (ILC)
- would help understand the complexities of new physics discovered at the LHC
- support 1-2 experiments
- timescale unknown (probably not before 2025)
- cost: \$5-10 billion??

