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Friction and Every Day Life
 Allows us to walk and drive

 Holds thread, nails, screws, bolts, bricks, … 

 Holds fabric and knots together

 Determines how things feel, texture of food

Wastes energy    ~20% in car engine
 Produces wear    abrades material

 destroys lubricants

 Central to earthquake triggering, dynamics

Economic cost of poor friction control
more than 2% of GNP
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Static friction Fs

 minimum force needed to initiate sliding.
Kinetic friction Fk(v) 

 force to keep sliding at velocity v.
Typically, Fk(v) varies only as log(v) and Fs>Fk(v) at low v

 Load

F

Amontons’ Laws (1699): 
 Friction  load  constant =F/Load.
 Friction force independent of apparent contact area Aapp.
But: Amontons coated all surfaces with pork fat

F Aapp for soft, flat solids, polymers, tape
 often changes with load  friction for load ≤ 0
Friction depends on history (rate-state models)
Laws violated in nanoscale experiments & simulations
 solids slide like fluids, fluids stick like solids

Friction Laws ?
v

Many Systems Have Friction with Load ≤ 0
Geckos, tape, putty, … stick on walls or ceilings
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Davinci’s Experiments  =0.25
Friction Laws ?

Pitenis, Dowson, Sawyer, 
Tribol Lett 56, 509 (2014)

lab

K-12 outreach

DaVinci
sketch

Modern 
experiment

Why Friction Load & Independent of Apparent Area?

Geometric explanation (Amontons,Parents,Euler,Coulomb)
 Surfaces are rough 
 Friction = force to lift up ramp 

formed by bottom surface 
 F=N tan  =tan 
Problems:
 Most surfaces can’t mesh
 Roughening can reduce  (hard disks)
 Monolayer of grease changes  not roughness
 Once over peak, load favors sliding  kinetic friction=0
 Friction proportional to apparent area not load in some cases
Static friction  Force to escape metastable state

How can two surfaces always lock together?
Kinetic friction  Energy dissipation as slide

Why is this correlated to static friction? Why does T matter?

F

N


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Many Mysteries Remain About Friction’s Origins
Friction determined by processes on wide range of scales

•Friction comes from interactions between atoms in 
repulsive contact < nm → sensitive to exact chemistry, 
atomic geometry, … that is often unknown

•Surfaces rough on nm to mm scales 
Area and geometry of contacting regions determined by 
roughness and long-range elastic and plastic deformation.

•Adhesion typically ignored in determining contact & friction

No general theory for behavior far from equilibrium
Equilibrium  stable state minimizes free energy
Far from equilibrium  must solve dynamical equations

Computer simulations allow controlled “experiments”   
Explore trends, discover unanticipated mechanisms

Common view since mid 1900’s
Surfaces rough on many length scales

and usually find Areal << A0

Measurements and theory  Areal  Load in many cases
 get Amontons’ laws if constant shear stress shear

friction = Areal shear Load 
Also explains many exceptions to Amontons’ laws

Adhesion Areal nonzero at zero load, still have friction
Friction A0 for soft materials because Areal ≈A0

Friction Areal predicted by continuum theory for 
single asperities with radii from nm to mm

 N2/3 for non-adhesive solids (Hertz theory)
Bowden & Tabor – hard sphere on polymer 

Areal

A0

Is Friction Proportional to Real Area?
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Surfaces Often Rough on Many Scales  Self-Affine

Artificial landscape – computer generated self-affine fractal
http://thornyissues2.blogspot.com/2014/06/beauty-in-nature-fractals_21.html

Height variation h over length ℓ  h ℓ H 0<H<1
for wavelengths s< ℓ <L - range can matter
Total height variation: hrms ~ L

H

Average slope h/ℓ  ℓ-(1-H)    0 as ℓ increases 
 rms slope h’rms s

-(1-H) 

Surfaces Often Rough on Many Scales  Self-Affine

H=0.5
ℓ

h

Mount Everest Clay 10x10m 

www.phys.ntnu.no

Examples 
with
H=0.8
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Height variation h over length ℓ  h ℓ H 0<H<1
for wavelengths s< ℓ <L - range can matter
Total height variation: hrms ~ L

H

Average slope h/ℓ  ℓ-(1-H)    0 as ℓ increases 
 rms slope h’rms s

-(1-H) 

h2

h1

Surfaces Often Rough on Many Scales  Self-Affine

H=0.5

Continuum theory (contact not friction): 
2 rough elastic solids ⟹	rough rigid and elastic flat

heights h1, h2 ⟹ h=h2-h1

Moduli E’1, E’2 ⟹	E’=1/(1/E’1+1/E’2)
E’=E/(1-2); E=Young’s modulus, =Poisson ratio

E’1

E’2

Height variation h over length ℓ  h ℓ H 0<H<1
for wavelengths s< ℓ <L - range can matter
Total height variation: hrms ~ L

H

Average slope h/ℓ  ℓ-(1-H)    0 as ℓ increases 
 rms slope h’rms s

-(1-H) 

h2

h1

Surfaces Often Rough on Many Scales  Self-Affine

H=0.5

E’1

E’2

Finite-element method for wide range of H, etc.. 
Hyun, Pei, Molinari, & Robbins, PRE70, 026117, ‘04; JMPS 53, 2385, ’05; Trib
Int. 40, 1413, ’07
Atomistic molecular dynamics (MD) or Greens function
Akarapu, Sharp & Robbins, PRL 106, 001504301 (2011), Pastewka & Robbins, 
PNAS, 111(9), 3298 (2014).
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• Hertz - Single spherical contact ArealN2/3, N=normal load
• Many spheres, different heights-Greenwood & Williamson

Contact where undeformed surfaces 
overlap    (Bearing area model)
N force to flatten each asperity
→Predicts Areal  N, explains friction N?
BUT Areal  N only at very small Areal/Aapp < 10-4

Wrong long-range correlations.
• Scaling Theory: Persson 2001

Area & pressure as increase resolution
Gives Areal  N, right spatial correlations

• Finite-element continuum for wide range of H, etc.. Hyun, Pei, 
Molinari, & Robbins, PRE70, 026117, ‘04; JMPS 53, 2385, ’05; Trib Int. 40, 1413, ’07

• Atomistic molecular dynamics (MD) or Greens function
Akarapu, Sharp & Robbins, PRL 106, 001504301 (2011), Pastewka & Robbins, PNAS, 
111(9), 3298 (2014).

Nonadhesive Elastic Contact of Rough Surfaces

(Carbone & 
Bottiglione)

Molecular Dynamics up to Micrometer Scales
Challenge: elastic interactions - long-range →need cube of size L3

Use multiscale approach for L~ 3 m ~1012 atoms

At surface - molecular dynamics (MD) simulations of ~108 atoms
At depth where displacements are small only need linear response 
Use atomic Greens function in bulk

Seamless boundary conditions
Similar to Campana & Muser
Extended to long range interactions,
analytic GF, multibody potentials

EAM, Stillinger-Weber, …
Periodic boundaries or semi-infinite

Campaña, Müser, Phys. Rev. B 74, 075420 (2006); Pastewka, Sharp, Robbins, Phys. Rev. B86, 075459 (2012)

L= 8192d

d
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Areal

A0

Area  Load  Dimensional Analysis

ܰ/݄௥௠௦
ᇱ ଴ܣᇱܧ

0.02  0.04  0.06  0.08  0.10  00



Only material property is
contact modulus E’=E/(1-2)

Areal E’/Load is dimensionless
rms slope h’rms– dimensionless measure of roughness
Areal =  Load/ E’ h’rms - steeper  less area
 independent of L, hrms, system size

Numerical solution:
 ~2 for all H, h’rms , , … 

Fixed pressure in contact
prep = E’ h’rms/

Hyun, Pei, Molinari, & Robbins, PRE70, 
026117, ‘04; JMPS 53, 2385, ’05; 
Trib Int. 40, 1413, ’07

Very different 
surface 
roughness 
profiles give 
same κ=2.0

Results for 
different 
synthetic & 
experimental 
surfaces at 
A/A0~0.1
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Only material property is
contact modulus E’=E/(1-2)

Areal E’/Load is dimensionless
rms slope h’rms– dimensionless measure of roughness
Areal =  Load/ E’ h’rms - steeper  less area
 independent of L, hrms, system size

Numerical solution:  ~2 for all H, h’rms , , … 
Very different analytic models→predict similar 

Bearing area – Greenwood-Williamson =(2)1/2≈2.5
Persson’s scaling theory     =(8/)1/2≈1.6

Bearing area – contact where undeformed surfaces 
overlap⟶	no asperity interactions

→wrong spatial structure

Areal

A0

Dimensional Analysis- Elastic, No Adhesion

Models Predict Very Different Contact Geometry
For Same Rough Surface and Areal 

Bearing area model   ⟹ Contacts like lakes 
on fractal landscape – area  diameter2

Red higher, blue lower        White regions contacts=lakes
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Models Predict Very Different Contact Geometry
For Same Rough Surface and Areal 

Elastic       Bearing Area Model
GW, Fuller - Tabor

Pei, Hyun, Molinari, & Robbins, J. Mech. Phys. Sol. 53, 2385, ’05

Connected regions fractal non-fractal
Area ac rDf with Df ≈1.6 Df=2
Most area in smallest ac Most area in largest ac

Dramatic change in conductance, stiffness, adhesion,…

Contact area  Load Even with Adhesion! 
NOTE: Two pieces of acrylic, bulk fracture energy to slide!

Applied normal stress = Load/Aapp

Dieterich & Kilgore 1994
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Why aren’t all surfaces sticky?
Adhesion Paradox (Kendall)
At atomic scales – surfaces feel van der Waals attraction
⟶ ~10MPa → 1cm2 supports 100kg
At macroscopic scales – surfaces not sticky 
⟶ no force to separate, contact theories ignore adhesion

Hansen, Autumn, PNAS 102, 385 (2005)

Jeong, Suh, Nano Today 4, 335 (2009)

Roughness Eliminates Adhesion
Fuller & Tabor, Proc. R. Soc. A 345, 327 (1975)

Roughness lowers area close enough to adhere
Only see adhesion here because use soft material, rubber
Past theories – qualitatively wrong  h’ not hrms

Roughness – center line average in m
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Roughness and Superhydrophobicity
Roughness also limits spreading of liquid on solid,
but need very high surface slope >1 to make nonwetting

http://en.wikipedia.org/wiki/Lotus_effect

Calculation Methods

rigid

elastic

attractiverepulsive

࢝

r

average attractive stress 
࢝

࢘∆

adhesion length ℓࢇ ൌ
࢝

ᇲࡱ

Contact area = Arep where atoms repel

ࡺ

Volume (4096a0)3
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Geometry ⟶	Analytic prediction for 

Adhesion doesn’t change geometry just adds attraction – DMT limit
Fix	Nrep⟶Arep indep. of la ⟹			Nrep=Arep prep , prep = E’ h’rms/rep

⟶	Attractive	area	Aatt ሺblackሻ	spreads	around	perimeter	of	Arep

Natt=Aatt patt, patt =w/r  and Aatt Arep because fractal

Add Adhesion - First changes, then sticks

ܰ/݄௥௠௦
ᇱ ଴ܣᇱܧ

݄௥௠௦
ᇱ - rms slope
ᇱܧ - contact modulus
ℓࡱ/࢝=ࢇ′ 
a0=atomic spacing

௥௘௣ߢ ൌ
݄௥௠௦
ᇱ ܣᇱܧ
ܰ

ൎ 2

1/=1/rep-1/att

< 0⟶ sticky

 also describes changes in stiffness and conductance

A
ࢋ࢘
࢖
࡭/

૙
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Predicted and Measuredatt

ℓa/a0=0.0005
ℓa/a0=0.005
ℓa/a0=0.05
H=0.3 
H=0.5 
H=0.8 
s/a0=4, 8,   

16, 32, 64
indicated by 
symbol size
h’rms=0.3 □
h’rms=0.1 ■

ܰ ൌ ௥ܰ௘௣ െ ୟܰ୲୲ ൌ
1

௥௘௣ߢ
െ

1
௔௧௧ߢ

௥௘௣݄௥௠௦ܣ
ᇱ Eᇱ

1/
 a

tt

ℓ௔ߨ
2݄௥௠௦

ᇱ
ݎ∆2

݄௥௠௦ᇱ ݀௥௘௣

ଶ
ଷ

Predict 1/att = Pastewka and Robbins, PNAS, 
111(9), 3298-3303 (2014). 

Necessary condition for atomic surfaces 

r~a0 – atomic spacing⟶ w/(E‘a0)=la/a0 >0.5 ݄௥௠௦
ᇱ 		

 Diamond/diamond bond la/a0 =0.06, LJ la/a0 =0.05 
Adhesion if ݄௥௠௦

ᇱ ൏ 0.1

 Passivated surface – van der Waals at interface
Reduce la/a0 100-fold 
⟶Adhesion if ݄௥௠௦

ᇱ ൏ 0.001 (wafer bonding)

Almost none of the surfaces around us show 
macroscopic adhesion even if nm scale attraction  

Consequences

ݎ∆/ݓ
ᇱ݄௥௠௦ܧ

ᇱ ௥௘௣ߢ/
ൌ

௥௘௣ℓ௔ߢ
௥௠௦݄	ݎ∆

ᇱ ൐ 1
Ratio of adhesive to 
repulsive pressure
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Necessary condition for atomic surfaces 

r~a0 – atomic spacing⟶ w/(E‘a0)=la/a0 >0.5 ݄௥௠௦
ᇱ 		

 Animals lower E‘ in 2 ways
– independent stalks

or sparse network of beams
in compliant shell

 Elastomers –	ℓ௔=nm to m vs. 3pm
all atoms ⟶ w E‘⟶ stretching between crosslinks
	ℓ௔/a0~n3 with n=# monomers between crosslinks
Dahlquist criterion E‘<0.1MPa not big w

Consequences

ݎ∆/ݓ
ᇱ݄௥௠௦ܧ

ᇱ ௥௘௣ߢ/
ൌ

௥௘௣ℓ௔ߢ
௥௠௦݄	ݎ∆

ᇱ ൐ 1
Ratio of adhesive to 
repulsive pressure

gecko

Necessary condition for atomic surfaces 

r~a0 – atomic spacing⟶ w/(E‘a0)=la/a0 >0.5 ݄௥௠௦
ᇱ 		

 Animals lower E‘ in 2 ways
– independent stalks

or sparse network of beams
in compliant shell

 Elastomers –	ℓ௔=nm to m vs. 3pm
all atoms ⟶ w E‘⟶ stretching between crosslinks
	ℓ௔/a0~n3 with n=# monomers between crosslinks
Dahlquist criterion E‘<0.1MPa not big w

Consequences

ݎ∆/ݓ
ᇱ݄௥௠௦ܧ

ᇱ ௥௘௣ߢ/
ൌ

௥௘௣ℓ௔ߢ
௥௠௦݄	ݎ∆

ᇱ ൐ 1
Ratio of adhesive to 
repulsive pressure

gecko
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Areal

Aapp

Is F= Areal shear ?
Problems  What determines shear?  

Why ≈ constant for given materials?  
Macroscale Areal/Load not material property ~1/hrms’
Nanoscale Areal hard to define, shear often zero,
depends on pressure, variables not controlled in experiment

Is Friction Proportional to Real Area?

What About Shear Stress in Areal?
Rigid Incommensurate Surfaces – No Net Friction!

1

τ
τmax

-1

x

Rotated θ = 0.1 
radians

Commensurate Rotated θ = 0.44 
radians

λ = 1/θ

a



Robbins MMM2014

17

Hirano & Shinjo – Contacting crystals typically incommensurate, 
No common period → lateral force averages to zero, Fs=0

Even identical surfaces become incommensurate if rotated
Consistent with many experiments & simulations

Fs=0 for incommensurate monolayers on substrate (Krim et al.)

Solids more slippery than fluid of same element 

Structural Superlubricity – Rigid Surfaces

Cieplak, Smith, Robbins, 
Science 265, 1209 (1994)

 s
≡

m
v/

F
k

Kr on Au

 exp.
▲sim.

liquid

crystal
Friction proportional to 
velocity - Fk=v m/s

Hirano & Shinjo – Contacting crystals typically incommensurate, 
No common period → lateral force averages to zero, Fs=0

Even identical surfaces become incommensurate if rotated
Consistent with many experiments & simulations in vacuum

Fs~0 for misaligned mica, graphite, MoS2, antimony, adsorbed gas
(Hirano et al. ‘91, Krim et al., Dienwiebel et al. ‘04, Martin et al., Dietzl et al. ‘08)

Structural Superlubricity – Rigid Surfaces

Dienwiebel et al. ‘04

Graphite

Antimony

A-1/2

Dietzel et al. PRL 101, 125505, ‘08
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Elasticity Eliminates Structural Lubricity

d

Shear modulus G
Poisson ratio ν=0.5

rigid Represent rigid surface with 
sinusoidal lateral force

fx = f0 sin(2πx/d)
fy = f0 sin(2πy/d)

Slide corrugation potential 
quasi-statically, minimize the 
energy
Vary dislocation core size

bcore = dG/max

f = τ0
max 1 െ 2ܽ/2ݎ

f0 ൌ	τmax	d2

Use τ0
max~μ0 p0= μ0 Ga/R to model 

pressure variation under sphere
Agrees with full sphere calculation
Linear response not influenced by 
curvature

“Adhesive model”

“Non-adhesive”

R

x

1-1

a/
b c

or
e

=
 1

/8
a/

b c
or

e
=

 2
56

τ
τmax

Elasticity  Breakdown of Structural Superlubricity

τfric – Static friction force per area
τmax – max traction parameter, d – atomic size
bcore =dG/ τmax – dislocation core size
Large a/d,  τfric=τPeierls  G exp[-2G/τmax]

θ = 0.44 rads

Contact radius  a/d

G/max

Rigid
fric a-3/2



Robbins MMM2014

19

Commensurate Slides via Dislocations at Large a/bcore
Small – coherent Large – dislocation assisted
a = 30 d        bcore = 128 d a = 126 d       bcore = 1 d

‐2 20.0

Fx

‐0.2 0.20.0

Fx

Precursors, scale dependent friction like that of Fineberg

Commensurate Adhesive Case: Three Friction Regimes

τ f
ri

c/
τ m

ax

Uniform

bcore≡ dG/τmax

Peierls

depends
on bcore

I II III

Agrees with scaling of 
Hurtado, J. A. & Kim, 
K.-S. 1999 Proc. R. 
Soc. Lond A 455, 
3363–3384.
Like precursors of 
Rubinstein & Fineberg

bcore

a/bcore

τfric – Total static    
friction per area

τmax – Local yield 
a – contact radius
bcore – core size
d – atomic spacing
G – shear modulus

bcore/d

bcore

Peierls
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bcore/d =G/max

Static friction  Peierls Stress as a/bcore∞
Single dislocation Peierls  G exp[-2bcore/d] measured separately
Friction near Peierls when dislocations separated (bcore < )

material stiffness

Interactions lower stress for 
motion when bcore > 
Large a results track periodic 
system results for same angle
Very low friction for large bcore

but finite, not zero
λ/d

edge

edge

commensurate
incommensurate

Friction Mechanisms in Contacts
Geometrical Interlocking:  F=N tan 
Unlikely to mesh, F goes up as smooth
Kinetic friction vanishes

Elastic Metastability: 
Marginal dimension - exponentially 
weak in disorder or lateral coupling
Mixing or Cold-Welding
Most likely for clean, unpassivated
surfaces in vacuum
Plastic Deformation (plowing)
Load and roughness dependent
High loads, sharp tips

Mobile third bodies → “glassy state”
hydrocarbons, wear debris, gouge, …
Glass seen in Surface Force Apparatus,
Robust friction mech. on many scales
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Welding at Interfaces

Thermally activated covalent bonding of silica: friction ~log(time)
Li, Liu, Szlufarska, 
Trib. Lett. 56: 481 (2014)
Li, Tullis, Goldsby, Carpick
Nature 480, 233 (2011)

Metals weld in vacuum conditions
- Scale, orientation dependence
Sørensen, Jacobsen & Stoltz, Phys. Rev. B 1996
Bowden and Tabor for many metal pairs
Landman, Fujita, Matsukawa, …
PMMA in Fineberg experiments
– energy release ~ fracture energy
Strength of polymer weld depends on contact
time and pressure
Ge, Pierce, Perahia, Grest, Robbins
PRL 110, 098301 (2013)

Cu

Friction from Plastic Deformation
Belak and Stowers, Fundamentals
of Friction,1992
Many other examples at meeting
Molinari, Szlufarska, …

No sliding friction (cutting force) 
until plastic deformation occurs

Geometry dependent

onset of yield
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Molecules adsorbed from air, wear debris, elastomer segments,
and other mobile “third bodies” lock surfaces together, Fs ≠ 0 

Find s=0 +  p  Fs=0 Areal +  N     (He, Müser, Robbins, Science ‘99)

 can explain Amontons’s laws without a constant shear

 is indep. of many parameters not controlled in experiment
Reflects slope of ramp formed by adsorbed molecules
⟹	Ramp	keeps	rearranging	so	always	uphill

 Thermal activation model explains why kinetic friction near static
and rises like (kBT/V*) log(v)
with atomic scale volume V*

“Dirt” Leads to Static Friction

Adsorbed layers give F load for AFM tips and 
decrease variability of friction with tip geometry

Load ()

F
ri

ct
io

n 
(


)

■ amorphous with 
adsorbed layer

■ incommens. with
adsorbed layer

○ bare amorphous

○ bare incommens.

Short chains
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Conclusions
• Have analytic understanding of relation between 

contact area and load: prep=N/A=E’/reph’  please measure

• Parameter-free theory for onset of adhesion
Adhesion rare, typical w/E’la << atomic spacing

• Parameter-free theory for sphere on flat contact
• Proportionality between area and load is not enough 

to explain Amontons’ laws even in nonadhesive case
 Is h’ a material parameter?
 Clean surfaces - friction exponentially weak
 Plowing, wear, … geometry changes 
 Welding may give constant  for polymers?

• Third bodies give s=0+p, material property of body
⟹ independent of uncontrolled exp. parameters

gives rate state behavior with right energy scale 


