CMS and LHC

Matt Rudolph
August 21, 2017

A discovery machine

- The Standard Model of particle physics works great

There must be more!

- Where did the antimatter go?
- What are dark matter and dark energy?
- How do we reconcile gravity and quantum mechanics?

The energy frontier

- Main focus for CMS (and ATLAS) is to probe higher energies
- Mass is energy - to see a new particle produced you need a machine capable of making it
- High energy is difficult - we use some of the most complex machines ever created

CMS DETECTOR
Total weight
Total weight : 14,000 tonne Overall diameter
Overall length
Magnetic field

14,000 tonnes

15.0 m $: 28.7 \mathrm{~m}$ | 28.7 m |
| :--- |
| T |

STEEL RETURN YOKE 12,500 tonnes

SILICON TRACKERS

Pixel ($100 \times 150 \mu \mathrm{~m}$) $\sim 16 \mathrm{~m}^{2} \sim 66 \mathrm{M}$ channels
Microstrips $(80 \times 180 \mu \mathrm{~m}) \sim 200 \mathrm{~m}^{2} \sim 9.6 \mathrm{M}$ channels

NibinCONUCTING SOLENOID
Niobium titanium coil carrying $\sim 18,000 \mathrm{~A}$

MUON CHAMBERS

Barrel: 250 Drift Tube, 480 Resistive Plate Chambers Endcaps: 468 Cathode Strip, 432 Resistive Plate Chambers

PRESHOWER
Silicon strips $\sim 16 \mathrm{~m}^{2} \sim 137,000$ channels

FORWARD CALORIMETER Steel + Quartz fibres $\sim 2,000$ Channels

CRYSTAL
ELECTROMAGNETIC
CALORIMETER (ECAL)
$\sim 76,000$ scintillating PbWO_{4} crystals

HADRON CALORIMETER (HCAL) Brass + Plastic scintillator $\sim 7,000$ channels

To turn

this...

To turn

this...

...into this

And this

What do we need to know?

- How many particles pass through?
- What direction are they going?
- What is their momentum or energy?
- What kind of particles are they?

Geiger counter

Silicon tracking

Tracking

Connect the dots

Momentum

- Trajectories tell us where charged particles went
- Magnetic field causes curvature
- Curvature gives momentum

$$
\text { radius }=\frac{p}{q B}
$$

Energy

- Design a calorimeter to cause lots of interaction and stop the particle
- Creates many new particles (a shower)
- Goal is to measure how much energy deposited

Calorimetry

ECAL crystals

HCAL stack

Jets

A different kind of "particle"

- Often we want to measure a quark or gluon
- But when these are produced with lots of energy you get a "jet" of nearby particles
- Most basic thing to do is add up
 measurements for everything inside a cone

Back to this!

What we get out

After a lot of complicated software processing

- Lists of "objects":
- Electrons
- Photons
- Muons
- Jets
- Their properties:
- p_{T} : momentum tranverse to beam direction
- ϕ : azimuthal angle around the beam
- $\eta^{1}: 0=$ perpendicular, $\infty=$ parallel to beam
- What kind of particle we think it is

Adding particles together

- Heavy particles decay
- Can only be detected by their decay daughters!
- In special relativity, if you know the momentum and energy (or mass) of the daughters, you can calculate the mass of the parent

A particle physics "search"

1 Pick a decay signature, e.g. two photons
2 Scan through events looking for it
3 Calculate the mass

Search for the Higgs

https://twiki.cern.ch/twiki/pub/AtlasPublic/ HiggsPublicResults//Hgg-FixedScale-Short2.gif
https://twiki.cern.ch/twiki/pub/CMSPublic/ Hig13002TWiki/HZZ4l_animated.gif

So we're done right?

What's left to do?

Search for new physics!

New particle?
 \section*{Atlas and CMS diphoton results}

More data says no

Searching...

...and searching...

Studying properties

Is the Higgs really the Higgs?

- Does it have spin-0?
- Does it decay into the particles we expect?
- At the right rates?
- Produced in the amount expected?

Decay to b and τ

Most recent results

Into the future

Need to probe Higgs properties with an uncertainty less than 5\%
Will need lots more data, fortunately there is a plan:

LHC / HL-LHC Plan

Precision b-physics

Maybe LHCb will be the discovery machine?

Are there new differences between leptons?

Conclusion

Backup

How do we know we measure things c

Calibrate with known particles

Effects of trigger

