

CMS and LHC

Matt Rudolph August 21, 2017

A discovery machine

- The Standard Model of particle physics works great
- There must be more!
 - Where did the antimatter go?
 - What are dark matter and dark energy?
 - How do we reconcile gravity and quantum mechanics?

The energy frontier

- Main focus for CMS (and ATLAS) is to probe higher energies
- Mass is energy to see a new particle produced you need a machine capable of making it
- High energy is difficult we use some of the most complex machines ever created

Superconducting magnets

To turn

this...

To turn

this...

...into this

And this

How to make sense of this?

What do we need to know?

- How many particles pass through?
- What direction are they going?
- What is their momentum or energy?
- What kind of particles are they?

How does it work?

Geiger counter

Silicon tracking

Tracking Connect the dots

Momentum

- Trajectories tell us where charged particles went
- Magnetic field causes curvature
- Curvature gives momentum

radius =
$$\frac{p}{qB}$$

Energy

- Design a calorimeter to cause lots of interaction and stop the particle
- Creates many new particles (a shower)
- Goal is to measure how much energy deposited

Shower of Particles

Calorimetry

ECAL crystals

HCAL stack

- Often we want to measure a quark or gluon
- But when these are produced with lots of energy you get a "jet" of nearby particles
- Most basic thing to do is add up measurements for everything inside a cone

Back to this!

https://www.i2u2.org/elab/cms/event-display/

What we get out

After a lot of complicated software processing

- Electrons
- Photons
- Muons
- Jets
- Their properties:
 - $p_{\rm T}$: momentum tranverse to beam direction
 - ϕ : azimuthal angle around the beam
 - η^1 : 0 = perpendicular, ∞ = parallel to beam
 - What kind of particle we think it is

Adding particles together

Heavy particles decay

- Can only be detected by their decay daughters!
- In special relativity, if you know the momentum and energy (or mass) of the daughters, you can calculate the mass of the parent

A particle physics "search"

- Pick a decay signature, e.g. two photons
- Scan through events looking for it
- Calculate the mass

Search for the Higgs

https://twiki.cern.ch/twiki/pub/AtlasPublic/ HiggsPublicResults//Hgg-FixedScale-Short2.gif

https://twiki.cern.ch/twiki/pub/CMSPublic/ Hig13002TWiki/HZZ41_animated.gif

So we're done right?

What's left to do?

Search for new physics!

New particle?

Atlas and CMS diphoton results

More data says no

Searching...

...and searching...

34 / 39

Studying properties

Is the Higgs really the Higgs?

- 💻 Does it have spin-0? 🗸
- Does it decay into the particles we expect?
- At the right rates?
- Produced in the amount expected?

Decay to b and au

Most recent results

35.9 fb⁻¹ (13 TeV)

Into the future

Need to probe Higgs properties with an uncertainty less than 5%
Will need lots more data, fortunately there is a plan:

Precision *b*-physics

Maybe LHCb will be the discovery machine?

Are there new differences between leptons?

Conclusion

How do we know we measure things co

Calibrate with known particles

Effects of trigger

