
Arduino Mega programming tasks and GPS antenna/receiver measurements:

1) Create a square pulse signal using the function TimerOne(), and to read and plot the signal

2) Record the GPS NMEA data

3) Measure the GPS antenna/receiver PPS square pulse and calculate the timing error

2021 Quarknet Workshop
R. Armendariz and Steve Barton

Arduino Mega shown connected to Raspberry Pi, GPS receiver, atmospheric pressure and temperature sensor, and digital counter

Square pulse with 1 sec period and 100 msec width generated with the Arduino Mega Timer1 function, shown on
an oscilloscope

This code uses
Timer1.initialize() and
Timer1.pwm() to generate
a square pulse from pin11
with a 1 second period,
and 0.1 second width. It
does not use the
interrupt() or delay()
functions

A wire
connects
pin11 to
pin2; a
hold-down
resistor
connects
them to
ground to
ensure the
voltage on
pin2 does
not float.

14:19:40.696 -> 1
14:19:40.696 -> 1
14:19:40.696 -> 1
14:19:40.696 -> 1
14:19:40.696 -> 1
14:19:40.696 -> 1
14:19:40.696 -> 1
14:19:40.696 -> 1
14:19:40.696 -> 1
14:19:40.696 -> 1
14:19:40.696 -> 1
14:19:40.696 -> 1
14:19:40.696 -> 1
14:19:40.743 -> 1
14:19:40.743 -> 1
14:19:40.743 -> 1
14:19:40.743 -> 1
14:19:40.743 -> 1
14:19:40.743 -> 1
signal goes low at 14:19:40.743
14:19:40.743 -> 0
14:19:40.743 -> 0
14:19:40.743 -> 0
14:19:40.743 -> 0
Data continued in 47ms increments

14:19:41.587 -> 0
14:19:41.587 -> 0
14:19:41.587 -> 0
14:19:41.587 -> 0
14:19:41.634 -> 0
14:19:41.634 -> 0
14:19:41.634 -> 0
14:19:41.634 -> 0
14:19:41.634 -> 0
14:19:41.634 -> 0
14:19:41.634 -> 0
14:19:41.634 -> 0
signal goes high again at 14:19:41.634
14:19:41.634 -> 1
14:19:41.634 -> 1
14:19:41.634 -> 1
14:19:41.634 -> 1
14:19:41.634 -> 1
14:19:41.634 -> 1
14:19:41.681 -> 1
14:19:41.681 -> 1
14:19:41.681 -> 1
14:19:41.681 -> 1
14:19:41.681 -> 1
14:19:41.681 -> 1

14:19:40.602 -> 0
14:19:40.602 -> 0
14:19:40.602 -> 0
14:19:40.649 -> 0
14:19:40.649 -> 0
14:19:40.649 -> 0
14:19:40.649 -> 0
signal goes high at 14:19:40.649
14:19:40.649 -> 1
14:19:40.649 -> 1
14:19:40.649 -> 1
14:19:40.649 -> 1
14:19:40.649 -> 1
14:19:40.649 -> 1
14:19:40.649 -> 1
14:19:40.649 -> 1
14:19:40.649 -> 1
14:19:40.649 -> 1
14:19:40.696 -> 1
14:19:40.696 -> 1
14:19:40.696 -> 1
14:19:40.696 -> 1
14:19:40.696 -> 1
14:19:40.696 -> 1

Description of Serial monitor data

The data shows the recorded pulse shape is off by 6
ms in width and 15 ms in period; more investigation is
needed to find the source of this problem

Signal width = high - low = 40.743 - 40.649 = 94 ms

Signal period =
high2 - high1 = 41.634 - 40.649 = 985 ms

At each time stamp the code prints out several lines
of data. The time stamps typically (but not always)
increase in 47 millisecond increments, i.e.
14:19:40.602 jumps to 14:19:40.649.

Serial plotter plot

The serial plotter plot
is correct; its
horizontal axis
represents the
number of
consecutive print
lines from
Serial.println(). The
signal’s time period
cannot be
interpreted from this
plot, however it is
clear the signal width
is about 10% of the
signal period.

EXCEL HELP to make the square pulse plot in Excel (the plot is shown on next slide)

Copy and paste several seconds worth of serial monitor data into Excel, don't copy the first few seconds because
sometimes the Arduino takes a few seconds to stabilize;

The data looks like this:
11:18:04.411 -> 0

11:18:04.411 is the time stamp (04.411 means 4 seconds and 411 ms), and 0 is the signal amplitude

Separate the time and amplitude into two separate columns, keep only the seconds and millisconds, and the
amplitude; I did it this way:

https://support.microsoft.com/en-us/office/split-a-cell-f1804d0c-e180-4ed0-a2ae-973a0b7c6a23

separate this: 11:18:04.411 -> 0
like this: 11:18: 04.411-> 0

then separate this: 04.411-> 0
like this 04.411 -> 0

keep only the columns: 04.411 0
make the plot

If Excel rounds the numbers in the cells you have to change the settings in Home -> Number ->
Category(Numbers) -> decimal places (increase it to 3, on positive numbers);

If Excel rounds the numbers on the plot axis you can prevent that on the plot's axis settings

https://support.microsoft.com/en-us/office/split-a-cell-f1804d0c-e180-4ed0-a2ae-973a0b7c6a23

The serial data plotted shows the signal read by the Arduino is correct; here the horizontal axis shows the pulse
time; the data is from Serial.println()

To record the GPS receiver NMEA data in the Arduino serial monitor:

wire together:

Arduino 5V to Vin

Arduino GND to GPS GND

Arduino RX0 to GPS RX

Arduino TX0 to GPS TX

Run this empty code:

void setup(){

}

void loop(){

}

To record the GPS receiver PPS square pulse in the Arduino serial monitor and serial plotter:

wire together:

Arduino 5V to GPS Vin

Arduino GND to GPS GND

Arduino PWM 2 to GPS PPS

Run this code:

void setup(){

Serial.begin(9600);

pinMode (2, INPUT);

}

void loop(){

while(digitalRead(2) == HIGH){

Serial.println(HIGH);

}

while(digitalRead(2) == LOW){

Serial.println(LOW);

}

}

To calculate and plot the error on the PPS signal do the following (plot is shown on next slide):

Collect serial monitor data for several consecutive PPS pulses; each pulse has a pulse start time when it goes high,
and a pulse stop time when it goes low; in Excel calculate the time difference between each pair of consecutive
pulses and make a table of at least 25 data points like this:

Data point 1 = 1 - [(pulse 2 start time) - (pulse 1 start time)]

Data point 2 = 1 - [(pulse 3 start time) - (pulse 2 start time)]

Data point 3 = 1 - [(pulse 4 start time) - (pulse 3 start time)]

Data point 4 = 1 - [(pulse 5 start time) - (pulse 4 start time)]

Etc. etc. …

Data point 25 = 1 - [(pulse 26 start time) - (pulse 25 start time)]

But only use the seconds and milliseconds; for example for the two pulses 14:19:40.649 and 14:19:41.634 use:

Data point 1 - [(41.634) - (40.649)] = 0.015 seconds

In Excel make a plot of this data; the horizontal axis goes from 1 through 25, label it "PPS pulses over 26 seconds."
Label the vertical axis "Timing error between consecutive PPS pulses in milliseconds." Draw the plot's vertical axis
in 5 or 10 millisecond increments to clearly see the data points fluctuate up and down about the zero line.

Plot shows the timing error on the GPS PPS signal period:
error = 1000 msec – (difference between the start times of consecutive pulses)

You can also use a pulse start time and end time to calculate the percent error in pulse width from the expected value of 100 milliseconds;
and use the pulse start times for two consecutive pulses to calculate the percent error in the period from the expected value of 1 second.

