

Muography sensor will search for any hidden chambers in the highlighted green area.

Due to the nature of possibly stacking chambers in this fashion, there is a high probability a chamber will be found.

Sensor Placement

Our sensor will be placed near the north tunnel of the pyramid (shown on the right)

Any incoming muons will be collected within its range of acceptance

Another sensor may be placed in the south tunnel

Sensor Design

A single "module" will consist of 4 scintillator shafts, with possibly a small spacing between each module

Sensor Fitting into the Pyramid

Extremely tight fit, probably only a few centimeters of space

Scintillator Shaft

The green tubing in the middle is wave-shifting fiber. The light that hits it is mostly blue/uv, it is absorbed and must emit at a lower frequency and turns green.

When a muon crosses through the shaft, the waveshifting fiber will light up ever so slightly, and the detector will measure this flash amount as data.

Purpose and Build of a 3D Display

The Problem:

The pyramid team needed a live, real time 3D display that can help them monitor, analyze, and optimize their sensor positioning, angle, and design.

- The entire display has to be to scale in terms of meters
- The sensor should display the paths of the muons through the pyramid
- The acceptance cone of the sensor should show what part of the pyramid is being scanned
- The sensor model should have its angles and positioning adjustable

The Build:

- The entire display will be built using javascript
- The calculated scale: 13 units in 3D render distance is equivalent to one real life meter The code will use Three JS, an efficient and industry standard 3D rendering library.

The code will also use Dat GUI, which is also an industry standard GUI rendering library.

3D Display Overview

Non-intrusive
Home
Progress

2D Visualization
Data Analysis
Archaeometry Using Cosmic Ray Muons

- Acceptance Cone (in red)
- Muon Vectors (in green)
- Pyramid Model
- Accurate and to Scale
- GUI Control
- Performance display

GUI Overview

Pattern Recognition Algorithm for Muon Path (Part 1)

When a pair of scintillators are lit up, a muon most likely has hit it. There needs to be an interpolation between the pair to determine the exact point between the two.

Currently, we simply take the ratio between the two values of the pair. There needs to be a study done no this, possibly using Monte Carlo simulations.

Pattern Recognition Algorithm for Muon Path (Part 2)

Pattern Recognition Algorithm for Muon Path (Part 3)

Pattern Recognition Algorithm for Muon Path (Part 4)

This current algorithm is very basic and limited

Recommendations for future development:

- A study needs to be done on the interpolation to be mathematically correct in determining the moun hit between two scintillators
- A study needs to be done on determining the efficiency value and other ways and factors to create the best estimation for the muon path
- The code currently only takes distance in the middle plane as a factor for its efficiency value, and is yet to be implemented completely.

Acceptance Cone and Sensor Adjustment

The Acceptance Cone (red below) is a visualization of the possible volume the sensor can scan

The adjustment of the angle of the sensor allows the pyramid scientists to find the most optimal positioning

The acceptance cone is determined by calculating the bounding box of the sensor and using its space diagonals to define the edges of an upside-down pyramid.

The red transparent pyramid represents the volume in which muons can potentially hit the sensor, encompassing the most extreme paths for the muons.

View of Pyramid Model (Part 1)

View of Pyramid Model (Part 2)

View of Pyramid Model (Part 3)

View of Pyramid Model (Part 4)

LIVE DEMO

The website will be eventually updated on i2u2 e-labs at https://i2u2.org/elab/cosmic/pyramid

Currently, the code and website is hosted on glitch.

