

Introduction

Cosmic rays are high energy particles emitted by the sun, supernovae, and black hole regions; about 90% of the cosmic ray flux consists of protons and 9% of heavier particles, primarily helium nuclei. When a cosmic ray proton collides with a nucleon in earth's atmosphere pions are produced; charged pions decay producing muons which are detectable as they hit earth's surface. Cosmic rays are studied in particle physics, space weather, astrophysics, during periods of solar activity, lightning, and influences from earth's magnetic field. At the Suffolk County Community College Ammerman Campus three MARIACHI cosmic ray detector counters each, with a 2" 400 nanometer photomultiplier tube, were retrofitted with a QuarkNet DAQ board from Fermi National Accelerator Laboratory. The detector is being developed in engineering physics projects and used in undergraduate research.

Fig. 1: Artistic rendition of cosmic rays entering Earth's atmosphere (Credit: Asimmetrie/Infn). http://cds.cern.ch/record/1345733

Fig. 2: A shower of secondary cosmic ray particles The shower can be as large as 100 km across and include muons (μ), pions, electrons, and neutrinos. The shower of particles is produced when a primary cosmic ray proton collides with a nucleon in earth's atmosphere. Figure courtesy: HAWK Observatory http://www.hawc-observatory.org/science/cosmicrays.php

Detector Equipment

Fig. 3: A scintillator cosmic ray counter

The detector "counter" consists of a plastic sheet of fluorescent scintillator and a photomultiplier tube. A cosmic ray detector can consist of one or more scintillator counters connected to a data acquisition system. The counters used were from the MARIACHI project. The scintillator is made of polyvinyltoluene plastic (PVT) doped fluorescent hydrocarbon molecules. Charged cosmic ray muons passing through ionize PVT molecules causing them to emit faint flashes of UV light; the hydrocarbons absorb the UV and re-emit longer wavelengths which the plastic is transparent to. The scintillators are wrapped with Tyvek reflective construction paper with a small hole cut at one end where the PMT lens is mated; a black case is used to isolate the detector from room lighting.

Fig. 4: Photomultiplier tube

ADIT B51B03 PMTs are used; they have a 2" lens, 10 dynode stages, and peak sensitivity at about 400 nanometers; the PMT lens is pressed flat against the scintillator and held in place with a spring.

Fig. 5: The PMT and scintillator

The PMT lens is mated against the flat face of the scintillator which is wrapped in Tyvek reflective wrap

Fig. 6: Data Acquisition Board (DAQ): The DAQ used is the QuarkNet DAQ board from Fermi National Accelerator Laboratory. It time stamps each detected cosmic ray with the UTC time, and has a 25 MHz crystal oscillator with 40 nanosecond timing resolution. The relative signal timing is further resolved with on-board electronics.

Measuring Cosmic Ray Muon Showers at Suffolk County **Community College**

Justin Mule (student), Department of Physical Sciences, Suffolk County Community College R. Armendariz PhD, Department of Physics, Queensborough Community College

Data Collection

Fig. 7: Cosmic Ray Flux Measurements

One week of data taken over Feb 15-22, 2018: shown are single PMT rates, 2-fold coincidence rate, temperature and atmospheric pressure. The PMT on channel 1 is stable with a dark rate of about 1.5 kHz. The PMT on channel 2 is unstable with large spikes of noise higher than 10 kHz; the temperature varied over 5° C and the pressure over 20 hecto Pascals. The 2 fold coincidence rate is accepted as the cosmic ray flux rate and was measured at about 32 Hz.

Fig 8: Cosmic Ray Flux Measurements

Here the Feb 18th coincidence data from Fig 7 is shown up-close; a drop in the 2-fold coincidence rate of a few Hertz is observed about 2000 UTC; this drop corresponds to a sharp rise in the single PMT noise rate on channel 2 and thus may be artificial. The 2 fold coincidence rate is accepted as the cosmic ray flux rate and is about 32 Hz.

Fig. 6: Two stacked detectors shown with detected cosmic rays displayed in real time on an oscilloscope.

The signals are about 20 nanoseconds wide and range in amplitude between about 1 mV to 1 V through a 50 Ohm load.

Fig. 9: Cosmic ray Shower Measurements

A second week of data was taken over Feb 21-28, 2018: shown are single PMT rates, 2-fold coincidence rate, room temperature, and atmospheric pressure. The PMT on channel 1 is somewhat unstable with a noise rate ranging over 1.25 kHz to 1.7 kHz, it varies by 36%; this was the same PMT on channel 1 in Fig. 7. The PMT on channel 2 is a different PMT than was used on Ch 2 in Fig. 7; it is stable with a rate of about 125 Hz. The temperature varied over 4° C and the pressure over 13 hecto Pascals. The 2 fold coincidence rate is accepted as the cosmic ray shower rate and was measured at about 0.06 Hz.

Fig. 10: Cosmic ray Shower Measurements

Here is a close-up view of Fig. 9 showing the first 10 minutes of data taken over 19:37 - 19:47 UTC on Feb 21, 2018; the PMT on channel 1 is stable with a noise rate of about 1.4 kHz; over this 10 minutes of data collection the operating voltage on channel 2 was increased and the PMT rate increased accordingly from 250 Hz to 800 Hz. The 2 fold coincidence rate is accepted as the cosmic ray shower rate and is about 0.09 Hz to 0.225 Hz.

Fig. 13: EQUIP Data Acquisition Computer Interface

The detector data acquisition system is connected to a GPS antenna receiver system which pinpoints the location of the detector; shown here is the Suffolk County Community College, Ammerman campus, Physical Sciences building where the detector was located during data collection.

References

1. WALTA School-Network Cosmic ray detectors, R. Jeffrey Wilkes et. al., IEEE Transactions on Nuclear Science, Vol. 51, No. 4, Aug. 2004, http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1323701

2. Student Projects in Cosmic Ray Detection by W. Brouwe et. al. http://scitation.aip.org/content/aapt/journal/tpt/47/8/10.1119/1.3246465

http://extras.springer.com/2006/978-0-7354-0320-8/cdr_pdfs/indexed/stage4_copyr/271_1.pdf

Valid GPS: 0.0 % Pulses analyzed: 57864 Rising orphans: 6611 alling orphans: 4551 Scalers not updating: Scalers reset: (Bin width: Clear

time

Control Banal / TOT Manifer / Data Manifer / Shawar Manifer / Coomate	
Control Parler Tor Monitor Rate Monitor Shower Monitor Geometry	
og file: data/EQUIP 21FEB2018 140610.txt Choose	Ella 121977F2 00 00 00 39 00 00 00 11F8CA49 195633.007 270218 A 06 0 +0066
	25633DEE 80 00 00 29 00 00 00 2557E589 195646.015 270218 A 05 0 +0066
erial port: COM24	ST 1037 +213 +066 3339 195657 270218 A 07 35BC1049 112 7049 00191500 000A7113
	SADELERE 60 00 00 36 00 00 00 00 3834/909 195/00.000 2/0216 A 06 0 +0056
S/N: 7049 Update Reset scalers(RB) Reset board(RE) GPS(L	(G) 4E21E220 AE 00 00 00 00 00 00 00 00 00 203544 195713.008 270218 A 05 0 40050
lelp: Page 1(H1) Page 2(H2) Barometer(HB) Status(HS)	
	91305558 80 00 00 00 00 00 00 00 00 90318758 195758 000 270218 8 05 0 +0058
Trigger(HT) Setup(V1) Voltages(V2) GPS Lock(V3)	913DEEBA 00 00 39 00 00 00 00 00 90A1B786 195758.000 270218 A 05 0 +0058
	913DEEEB 00 00 00 20 00 00 00 00 90A1B786 195758.000 270218 A 05 0 +0058
GPS status: A (valid) Sats used: 5 T= 21.4 deg C P= 1037.0	hPa DAC= 1520 913DEE8B 00 2A 00 00 00 00 00 00 90A1B786 195758.000 270218 A 05 0 +0058
	DEAC6211 80 00 00 3C 00 00 00 DE1E2489 195850.000 270218 A 05 0 +0058
Latitude: 40:50.907254 N Longitude: 073:03.317166 W	1B4C5259 80 00 37 00 00 00 00 1B3666C9 195931.008 270218 A 03 0 +0050
	1B4C525A 00 00 00 21 00 00 00 1B3666C9 195931.008 270218 A 03 0 +0050
Altitude: 84.371m Time: 21/02/18 19:35:38.004	1B4C525A 2B 00 00 00 00 00 00 1B3666C9 195931.008 270218 A 03 0 +0050
	1B4C525A 00 30 00 00 00 00 00 1B3666C9 195931.008 270218 A 03 0 +0050
	45F4FBF2 80 00 00 3E 00 00 00 44EF8DC9 195959.008 270218 A 05 0 +0050
Scalers(DS): 396303 30815 0 0 13	51B0B6DD 80 00 00 32 00 00 00 50DB4FC9 200008.000 270218 V 04 0 +0050
	B8CB5EB1 B4 00 00 00 00 00 00 00 B7ACB909 200116.000 270218 A 04 0 +0058
	B8CB5EB1 00 3C 3F 00 00 00 00 00 B7ACB909 200116.000 270218 A 04 0 +0058
	B8CB5EB2 00 00 00 34 00 00 00 B7ACB909 200116.000 270218 A 04 0 +0058
Control registers(DC):	B9F633AD A0 00 27 00 00 00 00 B92A3149 200117.008 270218 A 05 0 +0050
	B9F633AD 00 2D 00 00 00 00 00 B92A3149 200117.008 270218 A 05 0 +0050
	B9F633AE 00 00 00 23 00 00 00 B92A3149 200117.008 270218 A 05 0 +0050
Timing registers(DT): 00 10 14 00	BD470DD7 B8 00 3E 00 00 00 00 00 BC2521C9 200119.008 270218 A 05 0 +0050
	BD470DD8 00 00 00 25 00 00 00 00 BC2521C9 200119.008 270218 A 05 0 +0050
Trianer	BD470DD8 00 28 00 00 00 00 00 BC2521C9 200119.008 270218 A 05 0 +0050
ngger	E2A9F30C A6 00 00 00 00 00 00 E165E009 200144.000 270218 A 03 0 +0059
Ch. 1 Ch. 2 Ch. 3 Ch. 4 Coincidence level:	E2A9F30C 00 00 3D 00 00 00 00 E165E009 200144.000 270218 A 03 0 +0059
	E2A9F30D 00 24 00 00 00 00 00 00 E165E009 200144.000 270218 A 03 0 +0059
Gate width: 100 ns Pineline delay: 40 ns	E2A9F30D 00 00 00 2A 00 00 00 E165E009 200144.000 270218 A 03 0 +0059
	ST 1037 +214 +059 3339 200158 270218 A 04 F6427387 112 7049 00282400 000A7113
	D3 00060C0F 0000785F 0000000 00000000 0000000D
	reserved to 00 33 00 00 00 00 00 re427387 200185.000 270218 A 04 0 +0059
Threshold(TL): 30.0 30.0 30.0 mV	F685DF95 00 00 00 20 00 00 00 00 F6427387 200155.000 270218 A 04 0 +0659
	TADEBED 50 00 00 32 00 00 00 00 00 TABADAT 20201 000 270215 A 04 0 4051
Status output: Recet scalars (ST 2 x) = time interval: 1 min	
Data output. Enable(CE) Disable(CD)	
	EB291372 80 00 21 00 00 00 00 EB337C89 200442.001 270218 A 06 0 +0059
Command:	EE291372 2D 00 00 2D 00 00 00 EAA37C89 200442.001 270218 A 06 0 +0059
Save(SA 1)	EE291372 00 33 00 00 00 00 00 EAA37C89 200442.001 270218 A 06 0 +0059

Fig. 12: QuarkNet "EQUIP" Data Acquisition Computer Interface The detector data acquisition board (DAQ) is controlled from this graphics interface; the collected data is transferred to the computer and displayed here on the right. The data is listed in 16 columns providing information on the number of events each detector records, time per event, temperature and pressure information, and the number of GPS satellites picked up the GPS receiver. The controls on the left include information on which detector channels were used (here channels 1 and 2 were used), number of coincidences that were required to keep events (2 channel), time gate within which both detectors were required to make a detection (100 ns), and the signal amplitude threshold setting (30 mV).

Results and Conclusions

The Quark Net data acquisition board was connected to MARIACHI cosmic ray detectors in the physical sciences department at the Ammerman campus of Suffolk County Community College. Three detectors were calibrated and coincidence measurements made over the course of two weeks in February 2018.

The coincidence rate measured with the detectors is defined as the number of times per second both detectors output a signal within a small window of time, here 100 nano seconds was used as the time window. The coincidence rate is accepted as the rate of incident cosmic rays. The following two measurements were made:

minute is:

Flux = 32 Hz x (60 seconds/minute) / (2511 cm² per detector) = 0.8 muons per cm² per minute

shower rate in a future analysis.

QUEENSBOROUGH OMMUNITY COLLEGE

STEM Day Undergraduate Research Poster Presentations, Suffolk County Community College , March 7th and 14th 2018. (Poster v.2)

Fig 11: Time Over Threshold PMT Data

Data taken Feb 27, 2018: shown are the single PMT time over threshold data (ToT) for 57,864 recorded events from two PMT channels. The ToT is the amount of time in nanoseconds that a PMT signal is higher than the voltage discriminator threshold which is preset in the detector's electronics data acquisition system. The ToT histograms are a way to inspect PMT signal integrity: similar PMTs should be single peaked, Gaussian in shape, and peak at the same

1. Cosmic ray flux measured with two stacked detectors:

The coincidence rate was measured at 32 Hz; the actual rate is expected to be about 1 muon per cm² per minute. The scintillator panels used are 2,511 cm² thus the flux normalized to 1 cm² per

2. Cosmic ray showers measured with the two detectors separated by about 3 meters:

The coincidence rate was measured at 0.06 Hz; this rate will be compared to the expected 3m

Acknowledgements

We would like to thank Professors Warasila, Breeden, and Schnal of the physical sciences department at the Suffolk County Community College; and Mr. Dave Hoppert, Ken Cecire, and Dr. Mark Adams from the QuarkNet program.