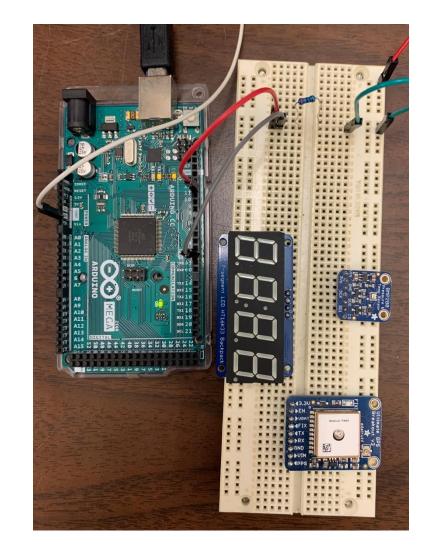
Cosmic Ray Data Acquisition Project

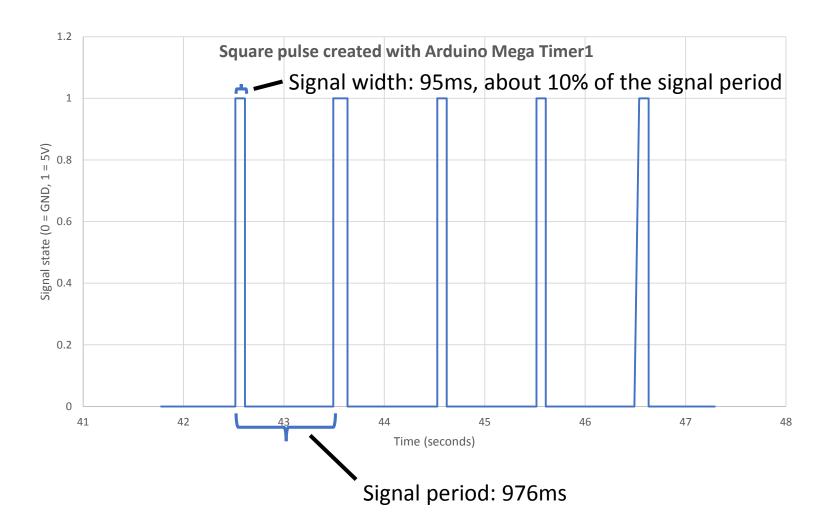

Jun ha Kim

Mentor: Professor Raul Armendariz

Queensborough Community College

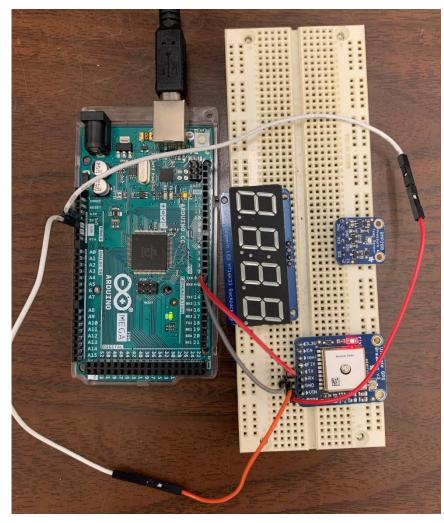
Department: Physics

Arduino Mega and Breadboard Setup (Square Pulse Plot)

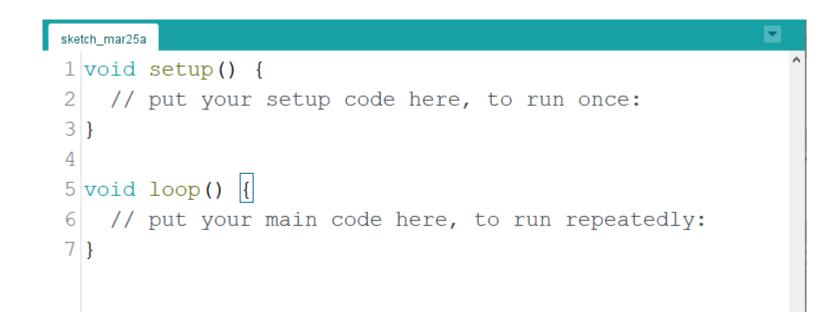

- Arduino Mega is connected to a solderless breadboard like so:
 - Arduino GND to negative (breadboard) power rail
 - Arduino Pin 11 to A10
 - Arduino Pin 2 to B10
 - Resistor connects E10 to F10 so that the voltage on Pin 2 does not float
 - J 10 to negative power rail
- Objective is to capture an electrical signal— Pulse Per Second (PPS) — that repeats once per second using the <u>Ardunio Board</u>

Code used to collect Pulse Point Data

```
sketch_apr01a
 1 #include <TimerOne.h>
 2
 3 void setup() {
    Serial.begin(9600);
    pinMode(11, OUTPUT);
 5
    pinMode(2, INPUT);
 6
    Timer1.initialize(1000000);
    Timer1.pwm(11,100000);
 8
 9
10
11 void loop() {
    while(digitalRead(2) == HIGH) {
12
13
       Serial.println(HIGH);
14
15
    while(digitalRead(2) == LOW) {
16
       Serial.println(LOW);
17
18}
```


- Timer1.initialize() and Timer1.pwm() are used to generate a square pulse from pin 11 (Arduino board)
- Pulse has a 1 second period and 0.1 second width
- Loop() function ensures that:
 - If the input is high, the program prints a high number
 - If the input is low, the program prints a low number

Square Pulse Plot Results


- Signal goes high (1) at: 42.516 (SS:MS)
- Signal goes low (0) at: 42.611
- Signal goes high again at: 43.492
- Signal width: high low = 42.611 – 42.516 = 95ms
- Signal period: $high_2 high_1 = 43.492 42.516 = 976$ ms

Arduino Mega and Breadboard Setup (NMEA data)

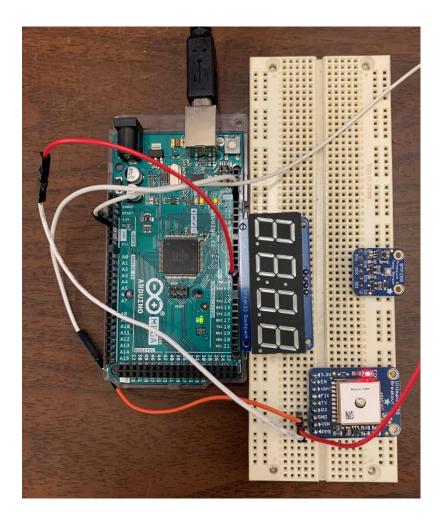
- Arduino Mega is connected to GPS receiver (placed on breadboard) like so:
 - Arduino 5V to VIN
 - Arduino GND to GPS GND
 - Arduino RX0 to GPS RX
 - Arduino TX0 to GPS TX
- National Marine Electronic Association (NMEA) data collected

Code used to collect NMEA Data

 Default baud rate (rate at which bits are transmitted) or 9600 bauds selected

GPS receiver NMEA data (sample)

- 11:17:39.939 -> \$GPGGA,151739.000,4045.3472,N,07345.5606,W,2,09,0.90,207.5,M,-34.3,M,0000,0000*5B
- 11:17:40.033 -> \$GPGSA,A,3,04,21,27,16,30,14,07,08,09,,,,1.67,0.90,1.40*0B
- 11:17:40.080 -> \$GPGSV,3,1,11,08,83,088,28,07,59,307,46,27,46,049,28,30,32,310,49*72
- 11:17:40.174 -> \$GPGSV,3,2,11,51,31,225,47,21,30,143,24,09,30,225,49,16,22,074,27*7B
- 11:17:40.220 -> \$GPGSV,3,3,11,04,14,193,40,14,07,273,47,01,07,168,*49
- 11:17:40.314 -> \$GPRMC,151739.000,A,4045.3472,N,07345.5606,W,0.01,211.12,150422,,,D*76
- 11:17:40.361 -> \$GPVTG,211.12,T,,M,0.01,N,0.02,K,D*3A
- The data was collected in an indoor setting, resulting in faulty information initially
- To fix this issue, the GPS module was connected to a satellite receiver using interlinked coax cables
- The satellite was placed outdoors, pointing towards the sky

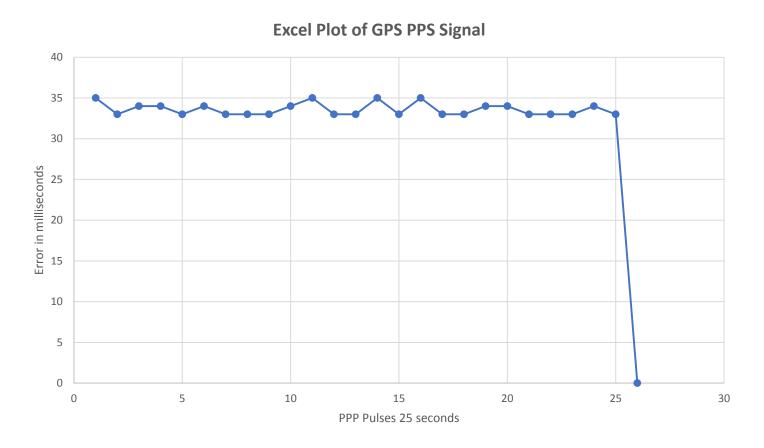

Understanding NMEA (National Marine Electronics Association) sentences

- All sentences begin with a "\$" symbol
- Limited to 80 characters (including a "newline" character)
- Commas delineate distinct subjects (latitude, time, etc.)
- Sentences provide information regarding location, satellites the GPS successfully interface with, altitude above mean sea level, etc.
- Difference sentences may repeat identical info, but will also supply new, relevant information

Understanding NMEA sentences (Continued)

- \$GPGGA,151739.000,4045.3472,N,07345.5606,W,2,09,0.90,207.5,M,-34.3,M,0000,0000*5B
 - GGA: indicates the data type and describes how the sentence should be interpreted
 - 151739: Time (UTC)
 - 4045.3472,N: Latitude 40 deg 45.3472' N
 - 07345.5606,W: Longitude 73 deg 45.5606' W
 - 2: Denotes fix quality
 - 09: Number of satellites being tracked
 - 0.9: Horizontal dilution of position
 - 207.5, M: Altitude above mean sea level (meters)
 - 34.3, M: Height of geoid (mean sea level) above WGS84 ellipsoid (meters)
 - *5B: Checksum data

Arduino Mega and Breadboard Setup (GPS Receiver PPS [Pulse Per Second] Square Pulse)


- Arduino Mega is connected to GPS receiver (placed on breadboard) like so:
 - Arduino 5V to GPS Vin
 - Arduino GND to GPS GND
 - Arduino PWM 2 to GPS PPS
- This setup ensures that data transmitted to the GPS is relayed to the Arduino Mega
- Objective is to capture an electrical signal that repeats once per second using the <u>GPS module</u>

Code used to record the GPS Receiver PPS Square Pulse

sketch mar25a 1 void setup() { Serial.begin(9600); 2 3 pinMode(2, INPUT); 4 5 6 void loop() { while(digitalRead(2) == HIGH) { 7 Serial.println(HIGH); 8 9 10 while(digitalRead(2) == LOW) { 11 Serial.println(LOW); 12 13

- Loop() function ensures that:
 - If digitalRead(2), or the value from pin 2, is a high value, the program prints "HIGH"
 - In contrast, if digitalRead(2) reads a low value, the program prints "LOW"
 - Continuous

PPS Signal Error

- Serial monitor data was collected for approx. 25 data points
- Data points were calculated using the following formula: 1 – [(pulse 2 start time) – (pulse 1 start time)]
- GPS PPS signal emits a consistent 33 to 35 millisecond error

References

- <u>https://airu.coe.utah.edu/wp-</u> content/uploads/sites/62/2017/09/adafruit-ultimate-gps.pdf
- <u>https://www.tramsoft.ch/downloads/garmin/NMEA%20data.htm</u>