

Cosmic Rays

What are they? How do we see the invisible?

10 muons per second go through you! You can't feel them but can detect them!

Mark Adams QuarkNet at Fermilab

Mark Adams Catholic University August 21 QuarkNet Cosmic Rays 1

QuarkNet Detectors High Energy Physics technology provided to high schools

Build telescope

Cosmic Ray Discovery

- Cosmic Rays discovered in 1912 (Victor Hess) in balloon experiments
- Radiation higher at 5000m than at sea level – implies source hitting atmosphere
- No difference during partial eclipse – implies Sun not the source

- Really!? Cosmic rays we see on earth don't come from the Sun?
- Why?
- They are particles with energies much higher than the energy available in the sun

How High is High Energy?

- 1 eV Sun light photons atomic energies
- 1000 eV x-rays (keV)
- 1,000,000 eV nuclear physics in sun's core (MeV)
- 1,000,000,000 eV gamma rays (GeV)

Cosmic Ray Rates Hitting the Atmosphere

Cosmic Ray Sources

coci

Galactic - Supernovae

QuarkNet

Extragalactic – Active Galaxies

Core of Galaxy NGC 4261

Hubble Space Telescope Wide Field / Planetary Camera

Source of Cosmic Rays

Cosmic Rays before hitting atmosphere Charged particles of Cosmic Origin

e*e*, pp, ...

Primary Cosmic-ray particles

> [▲]He (?) Produced at the Big Bang

Strangelets (?) Produced in collisions of strange-matter stars

decay of hypothetical Dark Matter e⁺, e⁻ particles From astrophysical sources as Pulsars

produced from the annihilation or

Secondary CR: produced by collisions of primary cosmic rays with the Interstellar medium Mostly protons Curvy paths through galaxy

Slide from Dr. Mercedes Paniccia talk at CERN

AMS-02 webpage: https://ams02.space

Cosmic Ray Summary

Cosmic Rays are high energy nuclei (mostly proton) accelerated in some extreme condition – eventually hitting Earth's atmosphere Galactic – Exploding massive stars Extragalactic – Massive Black Hole accelerates particles Weird that source of this energy is Gravity Charged – trajectory bent by magnetic fields

Can't point back to their origin

- Cosmic Ray Shower Video
- https://vms.fnal.gov/asset/detail?recid=1963802

Muons?

- Muons are created in the cosmic ray interactions with the atmosphere
- Particles that reach ground have large energies (2GeV)

 Earth's magnetic field shields us from most Cosmic Rays

Air Showers make muons

- Many particles created in collisions with atmosphere (Air Shower) ~ 15 km above surface
- Most particles interact strongly and stop
- some decay (to muons); muons live long enough to reach surface
- Muon lifetime is ~2 microseconds at speed of light that is 600m – so, again, why do they reach the ground?
- Why do muons make it to ground? (demonstrates Einstein's Special Relativity)

Muons at the surface

- Muons discovered (identified in air showers) in 1936 (Anderson and Neddermeyer). Rabi "Who ordered that?"
- Fundamental particle: charged, unstable lepton like a heavy (0.105 GeV) electron
- Particle sweet spot –

ENERGY Science

- does notice nuclei (lepton); Loses energy electromagnetically through atmosphere gradually
- Lives long enough to reach surface
- Massive (unlike electron) travels far

QuarkNet

quarks make up protons and neutrons using Strong force

leptons don't feel the strong force

Science

Muon momentum at surface

Compare single and multiple muon operation

- Time Dilation; Muon Lifetime
- Single muon (plus decay)
- Energy 1 GeV
- Trigger 3-fold vertical array
- Measure muon rates and muon decay time
- Speed with TOF
- Counter 1 Counter 2 Counter 3

- Large Array (DAQII)
- Multiple muons air shower
- Energy 100 GeV
- Trigger 2 in horizontal array
- Measure rates and pattern correlate with other arrays
- Output many lines leading and trailing edges of all pulses

μ μ Counter 1 Mark Adams QuarkNet Cosmic Rays 20

QuarkNet Detector

- Single muon passes through all detectors
- Energy > 2 GeV
- Electronics selects events with 2 hit counters
- GPS gives absolute time
- A detector stack can point
- Measure Muon Speed with Time of Flight (TOF)

Muons tell us about the cosmic rays, but we also can study the muons themselves

- Prove that our counters detect muons and not noise
- What direction do muons come from?
- Rates of muons versus zenith direction
- Rates of muons versus separation
- Speed of muons
- Muon Lifetime

- Characteristics of Air Shower
- Muon g-2; Moon Shadow; Pyramid (like your dome)

Conclusions

- Cosmic Rays rain down on the Earth from supernovae and Active Galaxies
- High schools use QuarkNet detectors to study cosmic rays and their resulting muons
- 100,000 files of data are available in e-Lab for all to study
- I hope you enjoy proving muons are real
- May measure maximum speed in the Universe this week

Extra Slides

GBS HS students published a measurement of the muon's speed

Mark Adams QuarkNet Cosmic Rays 26

Flux - Rate versus time

Flux Study

A week of data Note: no big day/night effect

> Not from Sun

21 Mark Adams QuarkNet Cosmic Rays

