
Redefining data acquisition
programs used to collect

synthetic cosmic rays generated
by pulse generators

Presenter: Gabe (Jun ha) Kim

Instructors: Professor Armendariz & Professor Stalerman

Arduino Board Setup

• Composed of x1 Arduino
Mega, x1 Breadboard with
sensors

• Placed on Breadboard:
• GPS

• Temp Sensor

• LED light

• Arduino Board:
• Connected to pulse generators

• Code runs on this setup

Setting up Pulse Generators

• Top pulse generator
• Sends out a “trigger” signal

• Bottom pulse generator
• Sends out an “analog” signal i.e. Voltage

• Oscilloscope
• Displays information visually

• Arduino Setup

Oscilloscope Output
• Yellow pulse

• Trigger pulse
• Pulse generator emits a signal (ranges

from 1 to ~200,000) every 1 second
• Period and Width knobs

• Purple pulse
• Analog pulse
• Pulse generator emits a signal that

describes the amplitude of the wave

• Green pulse
• Reset signal disseminated from the

Arduino board, after the Trigger pulse

Using WinMerge

• WinMerge: Third party
software used to see
differences in distinct versions
of code

• Coloring scheme:
• White = No difference

• Yellow = Difference detected in
block of code

• Red = Line or character
differences

Working Versions of Code Selected

• Confirmed the file works in
various period and width settings
• Trigger Rate: 1 Hz, Width: 100 ms

• Trigger Rate: 10 Hz, Width: 10 ms

• Trigger Rate: 100 Hz, Width: 1 ms

• Trigger Rate: 1 kHz, Width: 100 µs

• Trigger Rate 10 kHz, Width: 10 µs

• Rate of occurrence (sentence
output) is adequate, as seen on
the right

Edits made to code

• Comments & Naming Conventions
• // Description: This code captures trigger pulses and the analog voltage from

the trigger and analog pulse generators respectively

• int n=0 unsigned long int totalTriggers=0;
• totalTriggers counts how many trigger signals are received over a 1 minute

period

• Variable type changed to capture more numbers (up to 4 billion values)

User Manual

• For those unacquainted with
the program

• I discussed:
• Items and Libraries required

for the program

• Objectives

• Conditions that prevent the
program from working

• How to understand the output

Analog to Digital Converter (ADC) Limitations

• However, I discovered scenarios that prevent the code from working:

• Limitations exist that cause voltage fluctuation on Serial Monitor (if
trigger period < 100 µs)

• Per official documentation, it takes ~ 100 µs to read an analog input
• The maximum reading rate is about 10,000 times a second

• Analog to Digital Converter (ADC) is at fault

• Hardware limitation

Importance of Timer Interrupts

• Timer Interrupts enable the program to run
a new set of commands

• It pauses the execution of the loop()
function for a predefined number of
seconds

• Timer1 is a 16-bit timer, so the timer will
increase its value to 65,535 before
reverting to 0

• Once executed, the program resumes at
the same position (i.e. the loop)

Conclusion

• Developed familiarity with pulse generators and oscilloscopes

• Learned how to use and prepare Arduino and breadboards for data
collection purposes

• Discovered the importance of good naming conventions and
comments while writing code

• Gained insight into hardware limitations that prevent data collection
in higher frequencies

• Need to familiarize with Timer Interrupts and Registers

