

- Prof. Darien Wood
- Department of Physics
- Northeastern University

Science of fusion energy

- Basic introduction
- Minimal math
 - $-E = mc^2$
 - main formula behind fission and fusion
 - Unit conversion
 - Important to understand the scales involved

 Those with science/engineering backgrounds can see the references for more technical information

General overview of energy conversion

General overview of energy conversion

Physical Parameters of Energy-Releasing Reactions					
Reaction Type:	Chemical	Fission	Fusion		
Sample Reaction	$C + O_2 \\ \Rightarrow CO_2$	¹ n + ²³⁵ U ⇒ ¹⁴³ Ba + ⁹¹ Kr + 2 ¹ n	D (² H) + T (³ H) \Rightarrow ⁴ He + ¹ n		
Typical Inputs (to Power Plant)	Coal and Air	UO ₂ (3% ²³⁵ U + 97% ²³⁸ U)	Deuterium and Lithium		
Typical Temp. (K)	1000	1000	100,000,000		
Energy Released per kg Fuel (J/kg)	3.3 x 10 ⁷	2.1 x 10 ¹²	3.4 x 10 ¹⁴		

Copyright © 2016 Contemporary Physics Education Project (CPEP) – CPEPphysics.org

A little bit of nuclear physics...

Fusion of low-mass elements releases energy, as does fission of high-mass elements. Binding Energy per Nucleon as a Function of Nuclear Mass

Nuclear Reaction Energy: $\Delta E = k (m_i - m_f) c^2$

From Einstein's $E = mc^2$. $\Delta E = energy change per reaction; m_i = total initial (reactant) mass; m_f = total final (product) mass. The conversion factor k is 1 in SI units, or 931.466 MeV/uc² when E is in MeV and m is in atomic mass units, u.$

Copyright © 2016 Contemporary Physics Education Project (CPEP) – CPEPphysics.org

D-T process (man-made fusion) vs p-p (Sun)

Copyright © 2016 Contemporary Physics Education Project (CPEP) – CPEPphysics.org

Fuel for fusion

- Deuterium
 - Stable, harmless isotope of hydrogen (one proton+one neutron)
 - Can be distilled from all forms of water
 - E.g. 33 grams of deuterium in each cubic meter of sea water
- Tritium
 - Unstable isotope of hydrogen (one proton + two neutrons)
 - Half-life: 12.5 years
 - Used to be used to make glowing watch dials
 - Too rare in nature to get needed quantities
 - Can be created by bombarding Lithium with neutrons
 - Neutrons can come from the fusion reactor itself, so you really just need to supply Lithium
- Lithium
 - Metal (Used in batteries as well), found in rocks, brine, seawater
 - A 1-GW reactor would require 500 kg of Li per year

isotopes of Lithium

For practical energy generation, you need a large reaction rate

10-20

(The electron's mass is 0.000549 u.)

Label	Species	<u> Mass (u*)</u>		
n (¹ n)	neutron	1.008665		
р (¹ Н)	proton	1.007276		
D (² H)	deuteron	2.013553		
т (³ Н)	triton	3.015500		
³ He	helium-3	3.014932		
lpha (⁴ He)	helium-4	4.001506		
* 1 u = 1.66054 x 10^{-27} kg = 931.466 MeV/c ²				

Fusion Rate Coefficients

Plasma Fusion Reaction Rate Density = $R n_1 n_2$

 n_1,n_2 = densities of reacting species (ions/m³); R = Rate Coefficient (m³/s). Multiply by ΔE to get the fusion power density.

Copyright © 2016 Contemporary Physics Education Project (CPEP) – CPEPphysics.org

Ways of obtaining the necessary temperature and density

CREATING THE CONDITIONS FOR FUSION					
PLASMA CONFINEMENT AND HEATING					
Confinement:	Gravity	Magnetic Fields	Inertia		
Fusion requires high tempera- ture plasmas confined long enough at high density to release appre- ciable energy.	Star Formation Plasma	Tokamak	Laser Beam-Driven Fusion		
Typical Scales:	< Size: 10 ¹⁹ m> Plasma Duration: 10 ¹⁵ - 10 ¹⁸ s	<> Plasma Duration: 10 ⁻² to 10 ⁶ s	<> Plasma Duration: 10 ⁻⁹ to 10 ⁻⁷ s		
Heating Mechanisms:	 Compression Fusion Product Energy 	 Electromagnetic Waves Ohmic Heating (electricity) Neutral Beam Injection (beams of atomic hydrogen) Compression Fusion Product Energy 	 Compression (Implosion driven by laser or ion beams, or by x rays from laser or ion beams) Fusion Product Energy 		

Inertial Confinement

By Lawrence Livermore National Laboratory - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=20512199

- Simple description:
 - Make a pellet of deuterium and tritium
 - Blast it with high-powered lasers from all directions to make short-lived plasma
- Most advanced Facility
 - National Ignition Facility (NIF), located at the Lawrence Livermore National Laboratory, California

Northeastern University

Magnetic Confinement

- Use magnetic fields to confine the plasma while it is heated with electromagnetic waves
- Geometry: torus (Tokamak)
- Largest example under construction: ITER in Saint-Paullès-Durance, France

Northeastern University

Plasma

PLASMAS – THE 4th STATE OF MATTER CHARACTERISTICS OF TYPICAL PLASMAS

Plasmas consist of freely moving charged particles, i.e., electrons and ions. Formed at high temperatures when electrons are stripped from neutral atoms, plasmas are common in nature. For instance, stars are predominantly plasma. Plasmas are a "Fourth State of Matter" because of their unique physical properties, distinct from solids, liquids and gases. Plasma densities and temperatures vary widely.

Experimental challenge – confinement conditions

Copyright © 2016 Contemporary Physics Education Project (CPEP) – CPEPphysics.org

- Goal for ITER:
 - Demonstrate a Q-factor of 10
 - Q = (energy out)/(energy in)

A few remaining points

- Nuclear fission has a major drawback of producing tons of radioactive waste
 - Examples of isotopes in waste
 - Strontium-90 half live 30 years
 - Cesium-137 half life 30 years
 - Plutonium-239 half-life of 24,000 years
- Fusion was products are:
 - Helium (harmless, can be released to atmosphere)
 - Neutrons (are absorbed in reactor material, but can activate/weaken the material)