Relationship Between Energy and Momentum

• In Newtonian physics: $K = \frac{1}{2}mu^2$ and p

• So $K = \frac{p^2}{2m}$ (= E in absence of any other potential energies)

• In Relativity: $E = \gamma mc^2$ and $p = \gamma mu$ (in magnitude)

•
$$p^2 c^2 = \gamma^2 m^2 u^2 c^2 = \gamma^2 m^2 c^4 \frac{u^2}{c^2} = \gamma^2 m^2 c^4 \left(1 - \frac{1}{\gamma^2}\right)$$

•
$$\Rightarrow p^2 c^2 = E^2 - m^2 c^4$$

•
$$E^2 = p^2 c^2 + m^2 c^4$$

• $m^2 c^4 = E^2 - p^2 c^2$

Since mass is constant, this is an example of an invariant quantity. Another example of Lorentz Invariance

D.Acosta, Relativity

$$p = mu$$
, where $p^2 = p_x^2 + p_y^2 + p_z^2$

Invariant Mass

objects is conserved since energy and momentum are each conserved:

•
$$E_i = E_f$$
, where $E_i = \sum_{k=1}^{N_{\text{initial}}} E_k$ is the initial energy, and $E_f = \sum_{k=1}^{N_{\text{init}}} E_k$ is final energy
• $\overrightarrow{p}_i = \overrightarrow{p}_f$, where $\overrightarrow{p}_i = \sum_{k=1}^{N_{\text{initial}}} \overrightarrow{p}_k$ for initial momenta, and $\overrightarrow{p}_f = \sum_{k=1}^{N_{\text{final}}} \overrightarrow{p}_k$ for final
• $\Rightarrow E_i^2 - p_i^2 c^2 = m^2 c^4 = \text{constant}$
• $= E_f^2 - p_f^2 c^2$

were created, is what it is afterward

D.Acosta, Relativity

• While mass does not need to conserved in interactions, the invariant mass of a system of

• So whatever this is initially, even if the initial particles disintegrated and new particles

Invariant Mass Example

[Note that the rest mass energy of the electron is 0.511 MeV]

An electron and a positron (an anti-electron) annihilate with equal and opposite momentum of magnitude 1.55 GeV/c (note the new unit of momentum!) The collision produces a new particle called the J/ψ in the reaction $e^- + e^+ \rightarrow J/\psi$. What is the mass of this new particle?

