SBND in 10 minutes

SBND: Short Baseline Near Detector

SBND will be the Near Detector for the Short Baseline Program at Fermilab; Booster Neutrino Beam (BNB); Three LArTPCs: SBND, MicroBooNE and ICARUS.

SBN: Motivation

Evidence for an electron-like **excess** from neutrinos from particle accelerators (the "LSND and MiniBooNE anomalies").

Low Energy Excess Problem!

- Cherenkov detector.
- Booster Neutrino Beam Fermilab.
- Short Baseline.
- A clear excess in $\overline{v_{\mu}} \rightarrow \overline{v_{e}}$ and $v_{\mu} \rightarrow v_{e}$ appearance is observed in a low energy range.

Low Energy Excess Problem

Cherenkov detectors **cannot distinguish** electron from single gamma and cannot determine the composition of the excess.

- Electrons or photons?

LArTPCs can help us with this!

What are LArTPCs?

Liquid Argon Time Projection Chambers

Digitized bubble chamber! -> Imaging and Calorimetry.

Three-dimensional reconstruction of particles trajectories and interactions.

Argon as the neutrino target and as the detector.

Scalable to large volumes!

SBN: search for sterile neutrinos

SBND - Near Detector

SBND - Short Baseline Near Detector

112 ton active volume **LArTPC**;

110 m from BNB neutrino source;

Over a million neutrino interactions per year!

Large data sample will allow studies of neutrino-argon interactions in the GeV energy range with unprecedented precision

High statistics **measurement** of the **unoscillated** BNB.

critical for neutrino oscillations at the SBN Program

arxiv:1903.04608

SBND - Near Detector

SBND - Short Baseline Near Detector

- **112 ton** active volume **LArTPC**;
- 110 m from BNB neutrino source;

Over a million neutrino interactions per year!

Large data sample will allow studies of neutrino-argon interactions in the GeV energy range with unprecedented precision

arxiv:1903.04608

High statistics **measurement** of the **unoscillated** BNB.

critical for neutrino oscillations at the SBN Progra

SBND - Near Detector

SBND - Short Baseline Near Detector

112 ton active volume LArTPC;

110 m from BNB neutrino source:

Over a **million** neutrino **interactions per year**!

Large data sample will allow studies of neutrino-argon interactions in the GeV energy range with unprecedented precision

High statistics measurement of the unoscillated BNB.

critical for neutrino oscillations at the SBN Program

arxiv:1903.04608

SBND: a brand-new detector!

SBND: TPC

APAs: Anode Planes Assemblies

- -3 wire planes (vertical, +/-60°);
- wire pitch and plane spacing of 3mm.

CPA: Cathode Plane Assembly A single central cathode dividing the TPC in two drift regions;

Has reflective foils for the PDS.

<u>Field Cage:</u> Maintain 500 V/cm of drift field.

SBND: TPC

APAs: Anode Planes Assemblies

- -3 wire planes (vertical, +/-60°);
- wire pitch and plane spacing of 3mm.

CPA: Cathode Plane Assembly

A single central cathode dividing the TPC in two drift regions;

Has reflective foils for the PDS.

<u>Field Cage:</u> Maintain 500 V/cm of drift field.

SBND: TPC

APAs: Anode Planes Assemblies -3 wire planes (vertical, +/-60°);

- wire pitch and plane spacing of 3mm.

CPA: Cathode Plane Assembly

A single central cathode dividing the TPC in two drift regions;

Has reflective foils for the PDS.

<u>Field Cage:</u> Maintain 500 V/cm of drift field.

SBND: PDS and CRT

Photon Detection System:

Modular system behind the APAs: "looking" inside the TPC. 24 PDS modules:

- -5 PMTs: Total 120 8" Hamamatsu PMTs
- -8 X-ARAPUCAS: Total 192 X-ARAPUCA modules

Cosmic Ray Tagger

Every side of the detector will be covered by planes of extruded scintillator strips

SBND status:

-**Clean tent:** inner and outer tents to keep a clean environment for TPC assembly and for PDS protection (UV and blue filters).

SBND status

-2 first **APAs** coupled, aligned and covered: ready for installation (waiting for hanger pieces).

SBND status

-CPA installed!

-Mesh panels 12/16 installed!

Mônica Nunes - Syracuse University

SBND status

-Cold Electronics are on-site, tested and ready for installation;

- -Cable trays are being assembled;
- -Field Cage pieces are on-site and installation will start next week;

-X-ARAPUCAs production ongoing at UNICAMP;

-PMTs passed reception test at Fermilab.

SBN ND Building

-Warm outer vessel already installed in the SBN-ND building;

-Cryogenics installation ongoing;

-Installation of cryostat membrane starting this August, all the materials on-site;

-Fabrication of cryostat top at CERN completed. It'll be shipped to Fermilab by the end of summer.

Summary

The SBN program at Fermilab has **sterile neutrino oscillations**, **new physics** searches and **technology development** as main goals.

The SBND will:

- Constrain the unoscillated flux for sterile neutrino searches
- Largest sample of neutrino-Argon interactions than any past or present experiment.
- Provide precise cross-section measurements and inform MC generators.
- SBND will be ready for cold commissioning by the end of 2022

Exciting times are ahead!!

Obrigada!

(Thanks!)

How do we PRODUCE a beam of neutrinos?

Magnetic horns

Decay Pipe

Absorber

Why LAr?

For neutrinos experiments, we need:

- **big detectors!** -> Ar is "cheap"! 1% of the atmosphere.
- **dense detectors!** -> Ar is 40% more dense than water (when liquid!).
- detectors that **respond easily** -> Ionization: 55000 e/cm.
- light! -> Produces lots of scintillation light and it's transparent to it
 (~O 40000y/MeV deposited)

	-6	Ne	Ar	Kr	Xe	Water
Boiling Point [K] @ 1atm	4.2	27.1	87.3	120	165	373
Density [g/cm³]	0.125	1.2	1.4	2.4	3	1
Radiation Length [cm]	755.2	24	14	4.9	2.8	36.1
dE/dx [MeV/cm]	0.24	1.4	2.1	3	3.8	1.9
Scintillation [y/MeV]	19,000	30,000	40,000	25,000	42,000	
Scintillation λ [nm]	80	78	128	150	175	

TPC - Time Projection Chamber

Neutrino interaction produces charged and neutral particles.

Charged particles **ionize** and **excite LAr** (electrons and 128nm photons will be created). Photons are fast and can give us the t₀ of the event.
 Electrons are drifted by the electric field towards the wire planes.

Read out system for electrons and light records precise info about the interaction.

LArTPC:

08/18/2021

Mônica Nunes - Syracuse University

time

Electron - Photon shower separation

Analysing the dQ/dx of the beginning of the shower is possible to separate electron initiated showers from photon initiated showers.

LArTPCs for e/y separation

LArTPCs are capable of distinguishing electrons and single photons!

Timeline

Timeline

