
Timer1 Count Verification
May 23 23

Jun ha Kim

Advisor: Professor Raul Armendariz

Timer1 explained (1 of 2)

• The Arduino Mega 2560 has a processor that has a clock of 16 Mhz

• This means that it’s clock increments in 1/16,000,000 of a second
(which is 62.5 * 10^-9 seconds = 62.5 ns)

• Timer 1 is an interrupt routine, with a 16-bit length counter

• Counts to 65,535 units or (216 − 1) (before overflowing back to 0),
every time the Timer1 ISR is called

Timer1 explained (2 of 2)

• There is some flexibility to this statement; Timer1 counts can be used
to confirm time elapsed between two outputs in the serial monitor

• When Timer1 reaches 65,535 that means it has counted for
65,535/16,000,000 = 0.004096 seconds or 4.096 ms

• Objective: Learn how to use Timer1 to potentially attain higher time
resolution

Timer1 Calculation Results (2 ms)

• 2 ms (pulse generator: 500 Hertz)

• Sample raw results:

• Note: The following steps shall take place in Excel:

• TCNT1 Count Formula*: (Second row result) – (First row result)

• e.g. 40682 – 8713 results in a TCNT1 count of 31969

• 31969/16,000,000 ≈ 0.001999, thus corresponds to 2 ms

Windows System Time (Seconds :
Milliseconds)

TCNT1 Count

19.468 8713 (pulse 1)

19.468 40682 (pulse 2)

19.468 7142 (pulse 3)

Timer1 Calculation Results (2 ms) Warnings

• In the previous slide, the Timer1 Counter
overflowed by the time the third pulse came
in. To calculate the elapsed time between the
3rd and 2nd pulses: 7142 + (65535 – 40682) =
31995. 31995/16,000,000 = 0.001995
seconds or 2 ms.

• Therefore, if a given row result is on the
verge of approaching 65,535; use the
following formula: (65,535 - given row result)
+ (next row result)

• The steps described above must take place
in Excel

• Calculations
performed in Excel

• Divide each,
individual figure
found in TCNT1 Count
column by 16,000,000
to acquire result in
2ms column

Timer1 Calculation, Issues at 1ms level

• Repeat the calculations for 1 ms (1000 Hertz) and 3 ms (333 Hertz)
using the steps and processes described in the previous slide

• When verifying Timer1 calculations at the 1 ms level, note that the
result comes out to 0.00168; a figure that is markedly higher than
0.001 (intended result)

• More research is required to see why the above scenario occurs

• We used an oscilloscope to calibrate the period of the pulse from the
pulse generator

Arduino Setup

• Items required:
• Pulse generator (Trigger)

• Period and width settings must be at the
correct settings to derive desired
frequency

• Oscilloscope

• Arduino Mega 2560 (Breadboard is
not required for this exercise)

Pulse sent from Trigger
pulse generator.

Attach wire connected
to “+” to pin 2 on
Arduino. “-” goes to
GND (Arduino)

Reset signal. Connected to oscilloscope.

Attach wire connected to “+” to pin 14 on
Arduino. “-” goes to GND (Arduino)

Libraries, Pin Number Names, Global
Variables
// Libraries:

#include <SPI.h> // Allows you to communicate with SPI (Serial Peripheral
Interface) devices, with the Arduino as the master device

#include <Wire.h> // Enable this line if using Arduino Uno, Mega, etc.

// Signal pins are given a name, Global variables

#define triggerPin 2 // Trigger signal pin

Interrupt Service Routine and setup()
functions
// Interrupt service routine
// This function must be implemented, so that the TCNT1 counter counts
ISR(TIMER1_OVF_vect)
{
}
// All Arduino programs must contain a setup() and loop() functions
void setup() {

Serial.begin(115200); // Starts the serial monitor, sets baudrate to
"115200" BPS

pinMode(triggerPin,INPUT); // Sets the digital pin 2 as an input
delay(1000); // Pauses the program for one second at the moment of open

setup() function *continued*
// Initializes the Timer1 registers (16-bit timer -- counts from 0 to 65535 ad nauseam). Timer
interrupts/pauses the execution of the loop() function for a predefined number of seconds.

// Timer1 is a 16-bit timer, so the timer will increase its value until it reaches its maximum count
before reverting to 0. This enables the program to run a different set of commands. Once
executed, the program resumes at the same position.

TCCR1A = 0; // Sets entire TCCR1A--Timer1 Control Register A--to 0

TCCR1B = 0; // Timer 1 Control Register B set to 0 (The physical address of timer1)

TCCR1C = 0; // Timer 1 Control Register C set to 0

TCNT1 = 0; // Initialize timer/counter 1's value to 0

TIMSK1 = _BV(TOIE1); // Timer/Counter1's interrupt mask register; TOIE1 is the timer/Counter1
overflow interrupt enable

TCCR1B = 1; // Timer 1 Control Register B set to 1

attachInterrupt(digitalPinToInterrupt(triggerPin), Trigger, RISING); // Interrupts execution of the
program when a trigger signal is received. The "Trigger" function is subsequently executed

}

Trigger() and loop() functions

void Trigger(){

unsigned int temp = TCNT1; // Only positive integers are
required

Serial.print("TCNT1 value: ");

Serial.println(temp); // Prints the value stored at temp

}

void loop() {

// No lines are necessary here

}

