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WHAT HEISENBERG KNEW 
TEACHER NOTES 

 
DESCRIPTION 
Werner Heisenberg proposed the uncertainty principle, one of the foundational concepts of quantum 
physics, in 1927. Heisenberg proposed that there are pairs of complementary variables which are 
fundamental quantities of nature. For complementary variables, the greater the precision in the 
measurement of one variable, the less the precision in the measurement of the other variable. This 
give-and-take is not from experimental systematics but is part of the very nature of the act of 
measuring the variables. The best known and most important of these complementary pairs are 
momentum-position and energy-time. This activity takes an empirical approach to these pairs. 
Students plot measurements of uncertainty in one variable, e.g., momentum (Dp), as a function of 
uncertainty in the other variable, e.g., position (Dx), and use these plots to discover relationships 
between the variables. 
STANDARDS ADDRESSED 
Next Generation Science Standards  

Science and Engineering Practices 
2. Developing and Using Models 
4. Analyzing and Interpreting Data 
5. Using Mathematics and Computational Thinking 
6. Constructing Explanations and Designing Solutions 
7. Engaging in Argument from Evidence 
8. Obtaining, Evaluating, and Communicating Information 

Disciplinary Core Ideas – Physical Science 
PS1.A: Structure and Properties of Matter 
PS2.B: Types of Interactions 

Crosscutting Concepts 
1. Patterns  
2. Cause and Effect: Mechanism and Explanation  
3. Scale, Proportion, and Quantity  
4. Systems and System Models 

Common Core Literacy Standards 
Reading  

9-12.4 Determine the meaning of symbols, key terms . . .  
9-12.7 Translate quantitative or technical information . . .  

Common Core Mathematics Standards 
MP2. Reason abstractly and quantitatively. 

AP Physics 1: Algebra-Based and AP Physics 2: Algebra-Based Science Practices 
Science Practice 4 

The student can plan and implement data collection strategies in relation to a particular 
scientific question. 

Science Practice 5 
The student can perform data analysis and evaluation of evidence. 

IB Physics  
Topic 1: Measurement and Uncertainties 

1.2.6 Describe and give examples of random and systematic errors. 
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1.2.7 Distinguish between precision and accuracy. 
1.2.8 Explain how the effects of random errors may be reduced. 
1.2.11 Determine the uncertainties in results. 

Topic 12: Quantum and Nuclear Physics 
12.1: The interaction of matter with radiation 

ENDURING UNDERSTANDING 
Scientists must account for uncertainty in measurements when reporting results. 
LEARNING OBJECTIVES  
Students will know and be able to: 

• Make plots of data showing uncertainty in the complementary variables. 
• Manipulate data to create straight-line plots and thus create a mathematical model of the 

relationship between complementary variables.  
• Explain the uncertainty principle from empirical evidence. 

PRIOR KNOWLEDGE 
Students should be able to: 

• Graph from a table. 
• Manipulate data to “linearize” a graph. 
• Describe a diffraction pattern. 

BACKGROUND MATERIAL 
Werner Heisenberg (1901–1976) was one of the most important physicists in the formation of 
quantum mechanics. In 1927, he proposed the uncertainty principle. It stated that pairs of 
complementary variables in physics had minimal measurement uncertainties based on a relationship 
with each other: less uncertainty in one inevitably yields greater uncertainty in the other, no matter 
how sophisticated the measurement technique.  
One way to explain the complementary nature of momentum and position is in terms of wave-
particle duality. Imagine that we want to measure the momentum and position of a moving particle 
that we will call the "target." To do this, we fire a "projectile" with some momentum of its own at 
the target particle. If the momentum of the projectile is small, it will have only a small effect on the 
momentum of the target. See Figure 1 below.  

 
Figure 1: Relationship between momentum and de Broglie wavelength. 

When the projectile has a low momentum, as shown in the left picture of Figure 1, the momentum 
of the target is changed by only a small amount. The projectile bounces back to our detector and its 
recoil gives us a good idea of the momentum of the target. But, with a low momentum, the 
projectile has a large de Broglie wavelength. Thus, any measurement of position the projectile 
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makes has a high uncertainty. To improve the position measurement, we can decrease the  
de Broglie wavelength only by increasing the momentum of the projectile, as shown in the right 
picture of Figure 1. But if the projectile momentum is greater, then the projectile has a greater effect 
on the momentum of the target particle, making the momentum measurement less precise. Thus, 
“you can’t win” at a fundamental level. Or at least you cannot totally win: the uncertainty principle 
quantifies the closest you can come to winning for complementary variables. 
In this activity, students discover this relationship from empirical data on momentum uncertainty 
and position uncertainty for hot fullerene molecules passing through a series of slits of variable 
width. Done by Olaf Nairz, Markus Arndt, and Anton Zeilinger in 2001, this experiment confirmed 
the uncertainty principle. As shown in Figure 2 below, the molecules passed through narrow slits of 
variable width (Dx). Because the molecules were quantum objects, their de Broglie wavelengths 
caused diffraction, meaning that individual molecules would have seemingly random individual 
paths after passing through the slit which would, statistically, match a diffraction pattern.  

 
Figure 2: Experimental setup made by Nairz, Arndt, and Zeilinger, 2001, 

https://arxiv.org/abs/quant-ph/0105061. 
Measurement of the slit width yields the uncertainty in position. Measurement of the width, or 
angular spread, of the central maximum of this pattern yields the uncertainty in momentum (Dp). 
Their results were plotted in Figure 3 below. Your students have a table of data taken from the plot. 

 
Figure 3: Results of experiment by Nairz, Arndt, and Zeilinger, from their paper,  

https://arxiv.org/abs/quant-ph/0105061. 
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Your students reproduce the plot but also make a straight-line plot of Dp vs. 1/Dx to establish the 
relationship Dp ∝ 1/Dx or DpDx = constant. In reality, DpDx is greater than or equal to a quantity 
related to Planck’s constant. Finding the value of the proportionality constant is not a goal of this 
activity.  
RESOURCES/MATERIALS 
The links below are useful resources: 

• Georgia State University HyperPhysics, Particle lifetimes from the uncertainty principle, 
http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/parlif.html  

• Olaf Nairz, Markus Arndt, and Anton Zeilinger, Experimental verification of the Heisenberg 
uncertainty principle for fullerene molecules, Phys. Rev. A 65, 032109, 5 February 2002, 
https://arxiv.org/abs/quant-ph/0105061 

• Particle Data Group, Review of Particle Physics, http://pdg.lbl.gov/ 
• Wikipedia, Uncertainty principle, https://en.wikipedia.org/wiki/Uncertainty_principle 
• Wikipedia, Werner Heisenberg, https://en.wikipedia.org/wiki/Werner_Heisenberg 

Data tables 
Materials for making a graph or software for graphical analysis 
IMPLEMENTATION 
Divide your students into groups of 2–3. Give each group the student pages. 
Part 1: 
Data Table A has the hot fullerene data for Dp and Dx. Advise your students to plot Dp on the 
vertical axis and Dx on the horizontal axis as shown in Figure 4.  
Data Table A: Complementary Variables Momentum (p) and Position (x) 

Uncertainty in  Uncertainty in Reciprocal 
Position, Dx Momentum, Dp 1/Dx 

(micrometers) (x 10-27 kg-m/s) (1/ µm) 

0.09 9.6  
0.28 2.8  
0.46 1.3  
0.65 1.0  
1.36 0.5  
2.52 0.3  

 
Figure 4: Plot of Dp vs. Dx. 
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When linearizing data for an inverse graph, the inverted variable can be on the vertical or horizontal 
axis. Plotting Dp and 1/Dx allows units for the slope that are easier to interpret. See Figure 5.  

 
Figure 5: Linearized plot of Dp vs. 1/Dx. 

The mathematical model for this linearized data follows: 

∆𝑝 = 𝑠𝑙𝑜𝑝𝑒 ∗
1
∆𝑥 

∆𝑝∆𝑥 = 𝑠𝑙𝑜𝑝𝑒 
ASSESSMENT 
You can assess this activity using formative assessment in which each group makes a whiteboard 
presentation of their graphs and makes claims about how well the data supports the claim that  
Dp and Dx are complementary variables. Another approach is a class discussion. 
For summative assessment, you can use the data provided in Table B from the Particle Data Group 
Review of Particle Physics (PDG) to compare the widths of mass plot resonances of selected 
mesons with the lifetimes of the mesons. Since mass has an energy equivalent, the resonance width 
is a stand-in for uncertainty in energy, DE, and the lifetime for uncertainty in time, Dt. Note: Some 
of the meson “data” is simulated to fill out the data table. Students analyze the data in the same way 
they do the hot fullerene data but this time for DE and Dt. 
Research Question: 
Are energy and time complementary variables? 
Data Table B has the lifetime mass plot data for DE and Dt. 
Data Table B: Complementary Variables Energy (E) and Time (t) 

 Uncertainty in  Uncertainty in  Reciprocal 

 Energy, DE Time (lifetime), Dt 1/Dt 

Meson Name (keV) (x 10-24 s) (x 1024/s) 

sim1 20 33000  

sim2 40 16000  

upsilon 54 13000  

J/Psi 93 8000  

sim3 135 4900  

f-prime 196 3360  
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Source for actual mesons upsilon, J/Psi, and f-prime: Particle Data Group, Review of Particle 
Physics, http://pdg.lbl.gov/ 
Source for sim calculations: Georgia State University HyperPhysics, Particle lifetimes from the 
uncertainty principle, http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/parlif.html 
Student Instructions: 
Make a claim about whether energy and time are complementary variables. Justify your claim with 
evidence and reasoning. 
Assessment Scoring: 

● Plot DE vs Dt. 

 
● Describe the shape of the graph.  

o The shape of the Dt vs. DE graph shows an inverse relationship. 
● Make a claim about what happens to Dt when DE increases. 

o As DE increases, Dt decreases. 
● Determine the necessary steps to linearize the graph. 

o When linearizing the data for an inverse graph, the inverted variable can either be on 
the vertical or the horizontal axis. Plotting Dt and 1/DE allows for units for the slope 
that are easier to interpret. A sample plot is shown below. 

 
● Determine the mathematical model described by the linearized graph. 

○ The mathematical model for this linearized data follows: 

∆𝑡 = 𝑠𝑙𝑜𝑝𝑒 ∗
1
∆𝐸 

∆𝑡∆𝐸 = 𝑠𝑙𝑜𝑝𝑒 
● Validity of claims, evidence and reasoning:  

○ The student cites the shape of the graph Dt vs. DE as evidence of an inverse 
relationship. 

○ The student correctly determines the equation of the Dt and 1/DE as shown above. 
○ The student makes the claim that Dt and DE are complementary variables. 
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○ The student concludes that the Heisenberg uncertainty principle applies to the 
complementary variables Dt and DE. 


