EM waves (and teaching online)

Ted Kolberg (FSU) FSU Quarknet 2020 — Thursday July 23rd

$c = 3 \times 10^8 \text{ m/s}$

Why are our eyes adapted to see the visible part of the spectrum instead of radio waves, x-rays, or something else?

- A. It is an accident of evolution and easily could be different.
- B. The other frequencies of light are too easily absorbed by the atmosphere to be useful.
- C. Visible light has the appropriate velocity to be detected by biological systems.
- D. The sun emits mostly visible light.

Type of EM wave	Production	Applications	Life sciences aspect	Issues
Radio & TV	Accelerating charges	Communications Remote controls	MRI	Requires controls for band use
Microwaves	Accelerating charges & thermal agitation	Communications Ovens Radar	Deep heating	Cell phone use
Infrared	Thermal agitations & electronic transitions	Thermal imaging Heating	Absorbed by atmosphere	Greenhouse effect
Visible light	Thermal agitations & electronic transitions	All pervasive	Photosynthesis Human vision	
Ultraviolet	Thermal agitations & electronic transitions	Sterilization Cancer control	Vitamin D production	Ozone depletion Cancer causing
X-rays	Inner electronic transitions and fast collisions	Medical Security	Medical diagnosis Cancer therapy	Cancer causing
Gamma rays	Nuclear decay	Nuclear medicineSecurity	Medical diagnosis Cancer therapy	Cancer causing Radiation damage

For any type of wave,

$$v = f\lambda$$

so for all EM waves,

$$c = f\lambda$$

where the speed of light $c = 3.00 \times 10^8$ m/s.

)))))) 🔸

Transmitted Wave

Radar

Reflected Wave

Shift in frequency by velocity of the target

TARGET VELOCITY MEASUREMENT

View from above

View from side

Overall view

(a)

(c)

Will we observe a diffraction pattern from a single slit?

- A. Light of different frequencies passing through the slit will interfere constructively or destructively depending on the angle.
- B. Different wavelengths of light passing through the slit will interfere constructively or destructively depending on the angle.
- C. Light coming from different parts of the same slit will interfere constructively or destructively.
- D. No diffraction pattern should be seen.

 $\frac{\lambda}{2}$

<u>3λ</u> 2

 $\sin\theta = \frac{3\lambda}{2D}$

Bright

(c)

Destructive interference for single slit:

 $D\sin\theta = m\lambda$

for
$$m = -1, +1, -2, +2, \dots$$

 $\Delta \ell = D \sin \theta /$

(d)