PARTICLE PHYSICS INTRODUCTION

Darin Acosta

The Fundamental Forces of Nature

- Gravitation
 - The attractive force between objects with mass
 - Newton's Law of Gravitation $F = G \frac{m_1 m_2}{m_2^2}$
 - Einstein's General Theory of Relativity $G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$
- Electromagnetism
 - Electric force between electric charges $F = \frac{q_1 q_2}{4\pi\varepsilon_0 r^2}$
 - Coulomb's Law
 - Magnetic force between magnets and electric currents
 - Lorentz force law $\mathbf{F} = q(\mathbf{v} \times B)$
 - Unified in Maxwell's equations

Theawell V.F - 0 $\nabla \mathbf{x} \mathbf{B} - \frac{1}{C} \frac{\partial \mathbf{E}}{\partial t}$ $\nabla \cdot \mathbf{B} = \mathbf{0}$ $\nabla \times E + \underline{1} \partial B = 0$

6/29/17

The Fundamental Forces of Nature

Strong Nuclear Force

6/29/17

- The force responsible for binding protons and neutrons in atomic nuclei
- The binding energy is released in nuclear fission and fusion
- Weak Nuclear Force
 - The force responsible for radioactive decay (whereby one particle changes into another type)
 - For example the beta decay of a neutron $n \rightarrow p + e^- + \overline{V}_e$

4

Approximate Ranking of Force Strengths

- Strong: 1
- EM: 10⁻² (0.01)
- Weak: 10⁻⁶ (0.000001)

Forces, Fields, and Particles

- Forces are conveyed by <u>fields</u>
 - For example the electric field and the magnetic field
 - Allows action at a distance
- But fields are "quantized" into particles in relativistic versions of Quantum Mechanics (atomic physics)
 - Electric field is comprised of photons
- In general the fields corresponding to all forces are propagated by particles

The Particle Zoo

- All stable matter is made of just 3 types of particles:
 - electrons, protons, and neutrons
- But with the advent of particle detectors and accelerators, many other types of particles have been discovered:
 - Muon, 1938, M=106 MeV
 - Pion, 1947, M=135 MeV
 - Kaon, rho, omega, ...
 - Delta, Lambda, Sigma, Xi, ...

Particle Physics Intro

7

Seeing Particles with a Cloud Chamber -E

Particle Physics Intr

LIGHT UNFLAVORED MESONS	STRANGE MESONS ($S = :$	CHARMED MESONS	BOTTOM MESONS ($B = \pm 1$)	
Mini Reviews	Mini Reviews	Mini Reviews	Mini Reviews	See the listings from the
Form Factors for Radiative Pion and I Note on Scalar Mesons below 2 GeV The $\rho(770)$ The Pseudoscalar and Pseudovector The $\rho(1450)$ and $\rho(1700)$ (rev.)	The Charged Kaon Mass Rare Kaon Decays (rev.) Dalitz Plot Parameters for $K \cdot K_{\ell_3}^{+-}$ and $K_{\ell_3}^0$ Form Factors <i>CPT</i> Invariance Tests in Neu <i>CP</i> Violation in $K_5^0 \rightarrow 3 \pi$	$D^0 - \overline{D}^0$ Mixing (rev.) Particles D^{\pm}	Production and Decay of <i>b</i> -flavored Hadrons A Note on HFAG Activities (rev.) Polarization in <i>B</i> Decays (rev.) $B^0 - \overline{B}^0$ Mixing (rev.) Semileptonic <i>B</i> meson decays and the determ	Particle Data Group: <u>http://pdg.lbl.gov</u>
Particles	V_{ud} , V_{us} the Cabibbo Angle, <i>CP</i> Violation in K_L^0 Decays	$D^0 D^*(2007)^0$	Particles	
π^{\pm} π^{0} η	$\Delta S = \Delta Q$ in K^0 Decays $K^*(892)$ Masses and Mass [$D^*(2010)^{\pm} D^*_0(2400)^0$	<i>B</i> -particle organization B^{\pm}_{-}	
$\dot{f}_0(500)$ or σ was $f_0(600)$	Particles	$D_0^*(2400)^{\pm}$		
$\rho(770)$ $\omega(782)$ $\eta'(958)$ $f_0(980)$ $a_0(980)$ $\phi(1020)$ $h_1(1170)$ $b_1(1235)$ $a_1(1260)$ $f_2(1270)$ $f_1(1285)$ $\eta(1295)$ $\pi(1300)$ $a_2(1320)$ $f_0(1370)$ $h_1(1380)$ $\pi_1(1400)$ $\eta(1405)$ $f_1(1420)$ $\omega(1420)$	K^{\pm} K_{S}^{0} K_{L}^{0} K_{L}^{0} K_{L}^{0} K_{0}^{0} K_{0}^{0} K_{0}^{0} K_{0}^{0} K_{0}^{0} K_{0}^{0} K_{0}^{0} K_{0}^{0} $K_{1}(1270)$ $K_{1}(1400)$ $K_{0}^{*}(1430)$ $K_{2}^{*}(1430)$ $K_{1}(1650)$ $K_{1}(1650)$ $K_{1}(1650)$ $K_{2}(1770)$ $K_{3}^{*}(1780)$ $K_{2}(1820)$ $K_{1}(1830)$	$D_{1}(2420)^{0}$ $D_{1}(2420)^{\pm}$ $D_{1}(2430)^{0}$ $D_{2}^{*}(2460)^{0}$ $D_{2}^{*}(2460)^{\pm}$ $D(2550)^{0}$ $D_{J}^{*}(2600)$ was $D(2600)^{\pm}$ $D(2740)^{0}$ $D(2750)$ $D(3000)^{0}$	$B^{\pm}/B^{0} \text{ ADMIXTURE} \\B^{\pm}/B^{0}/B_{0}^{0}/b \text{-baryon ADMIXTURE} \\V_{cb} \text{ and } V_{ub} \text{ CKM Matrix Elements} \\B^{*} \\B_{1}(5721)^{+} \\B_{1}(5722)^{0} \\B^{*}(5732) \text{ or } B^{**} \\B^{*}_{2}(5747)^{+} \\B^{*}_{2}(5747)^{0} \\B_{1}(5840)^{+} \\B_{1}(5840)^{0} \\B_{1}(5970)^{+} \\B_{1}(5970)^{0} \\B_{1}(5970)^{0} \\B_{2}(5970)^{0} \\B_{3}(5970)^{0} \\B_{3}(5970$	
	$ \begin{array}{c} K_{0}^{*}(1950) \\ K_{2}^{*}(1980) \\ K_{4}^{*}(2045) \end{array} $			

Particle Physics Intro

N BARYONS ($S = 0, 1$	Δ BARYONS ($S = 0$	Λ BARYONS ($S = \cdot$	Σ BARYONS ($S = -1, I = 1$)
------------------------	----------------------------	---------------------------------	--------------------------------------

Mini Reviews	Particles	Mini Reviews	Mini Reviews					
Baryon Decay Paramet N and Δ Resonances (i	$\Delta(1232) 3/2^+$	Baryon Magnetic Mc	The $\Sigma(1670)$ Region	<u>ht</u>				
Particles	$\Delta(1600) 3/2^+$ $\Delta(1620) 1/2^-$	Λ and Σ Resonance Λ and Σ Resonance	Particles					
р	Δ(1700) 3/2 ⁻ Δ(1750) 1/2 ⁺	Particles	2'	****				
n N(1440) 1/2 ⁺	$\Delta(1900) 1/2^{-}$ $\Delta(1905) 5/2^{+}$	Λ Λ(1405) 1/2 ⁻	Σ^{-} ,	****				
N(1520) 3/2 ⁻ N(1535) 1/2 ⁻	$\Delta(1910) 1/2^+$ $\Delta(1920) 3/2^+$	Λ(1520) 3/2-	$\Sigma(1480)$ Bumps	*				
N(1650) 1/2 ⁻ N(1675) 5/2 ⁻	Δ(1930) 5/2-	Λ(1600) 1/2 ⁺ Λ(1670) 1/2 ⁻	$\Sigma(1560)$ Bumps $\Sigma(1580) 3/2^{-}$	*				
N(1680) 5/2 ⁺ N(1700) 3/2 ⁻	Δ(1940) 3/2 ⁻ Δ(1950) 7/2 ⁺	$\Lambda(1690) \ 3/2^{-}$ $\Lambda(1710) \ 1/2^{+}$	$\Sigma(1620) 1/2^{-}$ $\Sigma(1620)$ Production Experiment					
N(1710) 1/2 ⁺	$\Delta(2000) 5/2^+$ $\Delta(2150) 1/2^-$	Λ(1800) 1/2 ⁻ Λ(1810) 1/2 ⁺	$\Sigma(1660) 1/2^+$ $\Sigma(1670) 3/2^-$	***				
N(1720) 3/2 ⁺ N(1860) 5/2 ⁺	$\Delta(2200) 7/2^{-}$ $\Delta(2300) 9/2^{+}$	Λ(1820) 5/2+	$\Sigma(1670)$ Bumps $\Sigma(1690)$ Bumps	**				
N(1875) 3/2 ⁻ N(1880) 1/2 ⁺	Δ(2350) 5/2-	Λ(1830) 5/2 ⁻ Λ(1890) 3/2 ⁺	$\Sigma(1730) 3/2^+$ $\Sigma(1750) 1/2^-$	*				
N(1895) 1/2 ⁻ N(1900) 3/2 ⁺	Δ(2390) 7/2 ⁺ Δ(2400) 9/2 ⁻	Λ(2000) Λ(2020) 7/2 ⁺	$\Sigma(1770) 1/2^+$	*				
N(1990) 7/2 ⁺ N(2000) 5/2 ⁺	Δ(2420) 11/2 ⁺ Δ(2750) 13/2 ⁻	Λ(2050) 3/2 ⁻ Λ(2100) 7/2 ⁻	$\Sigma(1840) 3/2^+$	*				
N(2040) 3/2+	$\Delta(2950) 15/2^+$ $\Delta(\sim 3000 \text{ Region})$	Λ(2110) 5/2+	$\Sigma(1880) 1/2^+$ $\Sigma(1900) 1/2^-$	*				
N(2060) 5/2 ⁻	A(~ 5000 Region)	11(2323) 312	$\Sigma(1915) 5/2^+$	****				

See the listings from the Particle Data Group: <u>http://pdg.lbl.gov</u>

Particle Classification

- Hadrons:
 - Particles that interact with the strong nuclear force (carry nuclear charge)
 - Baryons:
 - Fermions (spin = 1/2, 3/2, 5/2, ...)
 - Includes the nucleons (p, n) and excitations of them (Δ , Λ , ...)
- Not fundamental contain "quarks"

- Mesons:
 - Bosons (spin = 0, 1, 2, ...)
 - π , K, ρ , ω , ...
 - Typically lighter than baryons (except when containing heavy quarks)
- Leptons:
 - Particles that do not interact with the strong nuclear force (do not bind in nuclei)
 - All spin 1/2 fermions
 - Charged leptons: e[±], μ[±], τ[±]
 - Electrically neutral: leptons: v_e, v_{\mu}, v_{\tau}

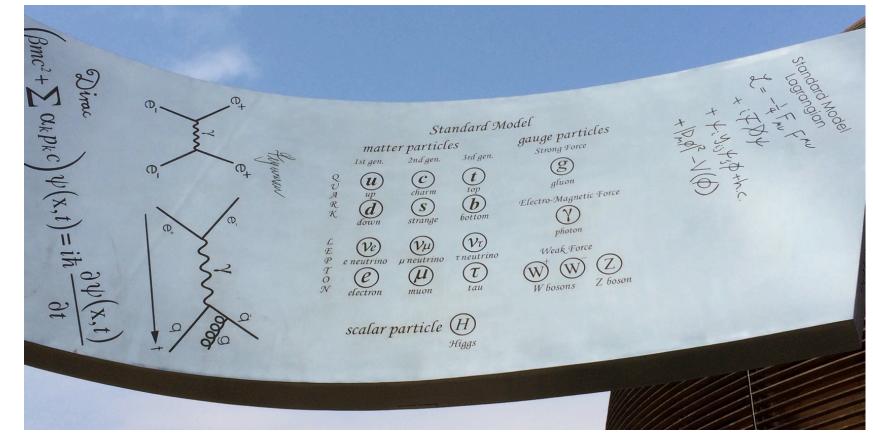
Fundamental (point-like) as far as we know

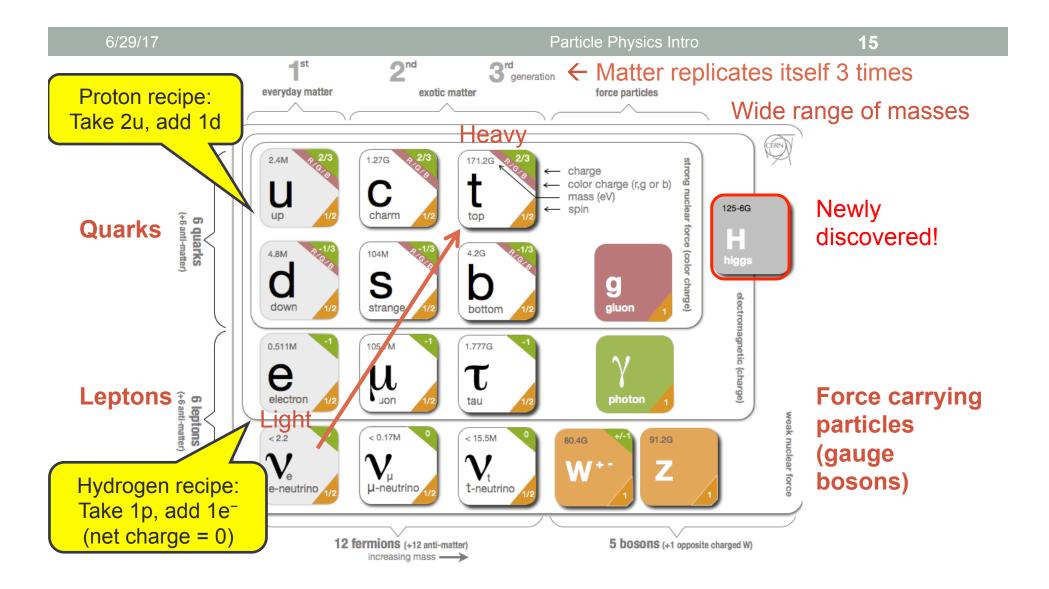
We'll Continue with the Standard Model Description after the "Eightfold-Way" activity...

Do Particle "Multiplets" and the Quark Model remind you of anything?

1	IA 1 H	Periodic Table													0 2 He			
2	3 Li	4 Be	😼 of the Elements 🖪 ်c 🖪 ႆο 🖡											9 F	10 Ne			
3	11 Na	12 Mg	ШB	IVB	٧B	ΥIB	VIIB		— VII —		IB	IIB	13 Al	14 Si	15 P	16 S	17 CI	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 Y	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
6	55 Cs	56 Ba	57 *La	72 Hf	73 Ta	74 ₩	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	89 +Ac	104 Rf	105 Ha	106 Sg	107 NS	108 Hs	109 Mt	110 110	111 111	112 112	113 113					

*Lanthanide	58				62				66	67		69	70	71
Series	Се	Pr	Nd	Pm	Sm	Eu	Gd	ТЬ	Dy	Но	Er	Tm	Υb	Lu
+ Actinide Series	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr


12


STANDARD MODEL

Particle Physics Intro

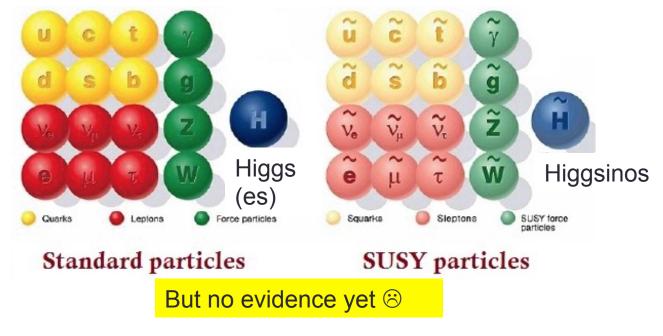
14

The Standard Model

The Standard Model of Particle Physics

- The (relativistic) quantum field electro-weak theory is described by the SU(2)×U(1) Weinberg-Salam Model (QED+Weak)
 - Responsible for electricity, magnetism, and radioactive decay
- The quantum field theory of the strong force is described by SU(3) Quantum Chromodynamics (QCD)
 - How quarks bind into protons and neutrons, and how nucleons bind in the nucleus
- Collectively, they are referred to as the "Standard Model"
- However, all masses are zero unless we introduce a scalar field
 - Generates mass for the vector bosons (W, Z)
 - Generates mass for the fermions
 - Generates a massive neutral scalar: the Higgs boson

What's Missing?

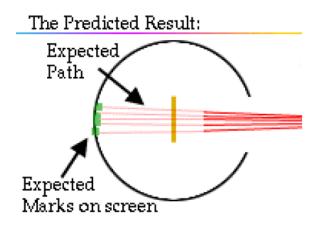

- The Standard Model can make extremely precise quantitative predictions for measurements
 - For example, the magnetic dipole moment of the muon can be calculated (and agrees with data) to 9 significant digits!
- Nevertheless it has many shortcomings:
 - It does not include gravity
 - It does not unify the strong force with the electroweak (Grand Unification)
 - It has a large number of "free" parameters (particle masses)
 - There is no explanation for the relationships between quarks and leptons (why are atoms neutral?)
 - And why 3 generations?
 - The Higgs mass is "unstable" (requires fine tuning of parameters)
 - No "dark matter" candidate

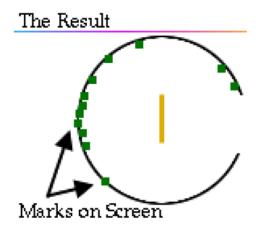
18

A Supersymmetric World?

 The leading extension beyond the SM is Supersymmetry, which proposes a symmetry between fermions and

bosons

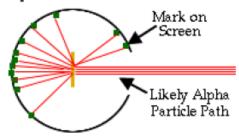


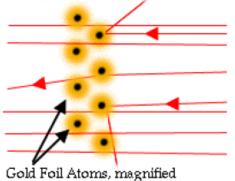

How to go Farther?

- Precision measurements
 - Many extensions to the Standard Model can make slight changes to production or decays rates of particles
 - "High Intensity" frontier of experiments
- High Energy
 - Directly produce new particles by building higher energy colliders
 - "High Energy" frontier of experiments

Particle Physics Intro

Rutherford Scattering Gold Foil **Radioactive Source** Atom Model Circa 1900 Alpha Particles Lead Zinc Sulfide Coated Screen Detail of Gold Foil According to old Atom Model Experiments by Geiger & Marsden in 1909 Alpha Particles Gold foil atoms, magnified

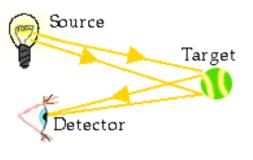



21

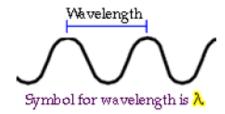
Rutherford Model of the Atom

Extrapolation of Result:

The Positive Nucleus Theory Explains Alpha Deflection



Conclusion: the atom contains a positive nucleus < 10 fm in size (1 fm = 10^{-15} m)



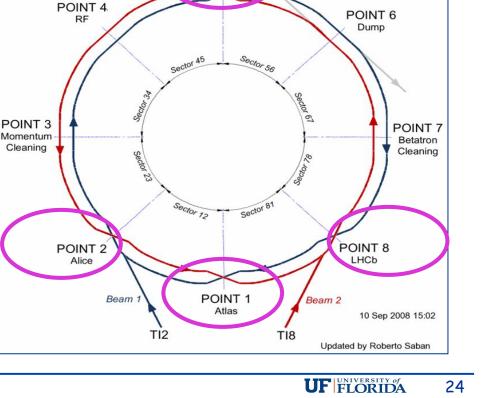
22

How we "see" particles

The smaller the wavelength, the smaller the features observed.

- Quantum mechanics tells us that <u>all particles are also waves(!)</u>, and thus can be used as probes
- Wavelength is inversely proportional to energy
 - <u>Need high energy</u> to probe quarks, etc.

Particle Physics Intro


From the very first circular accelerator

Ernest Lawrence, 1930

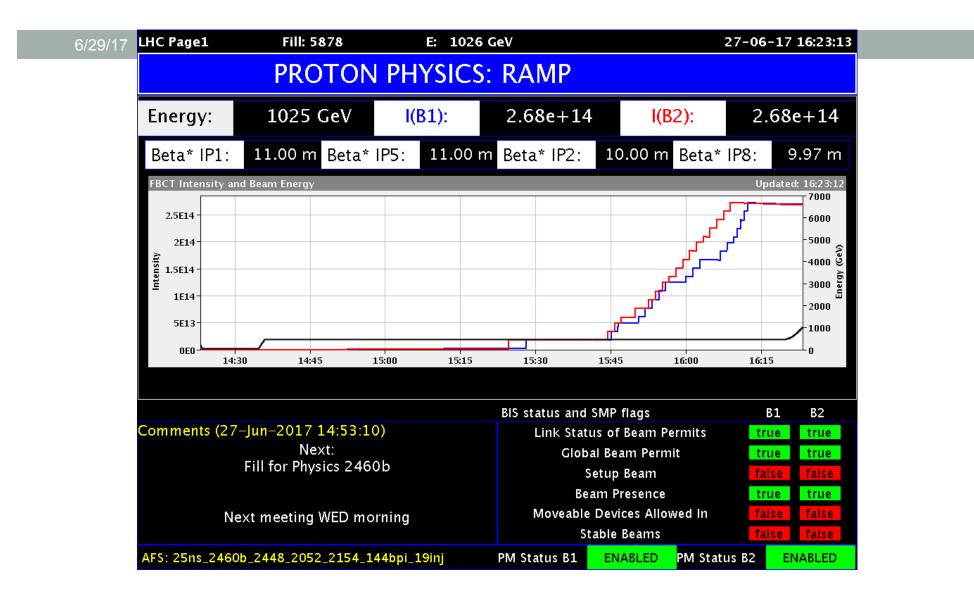
To the Large Hadron Collider (LHC)

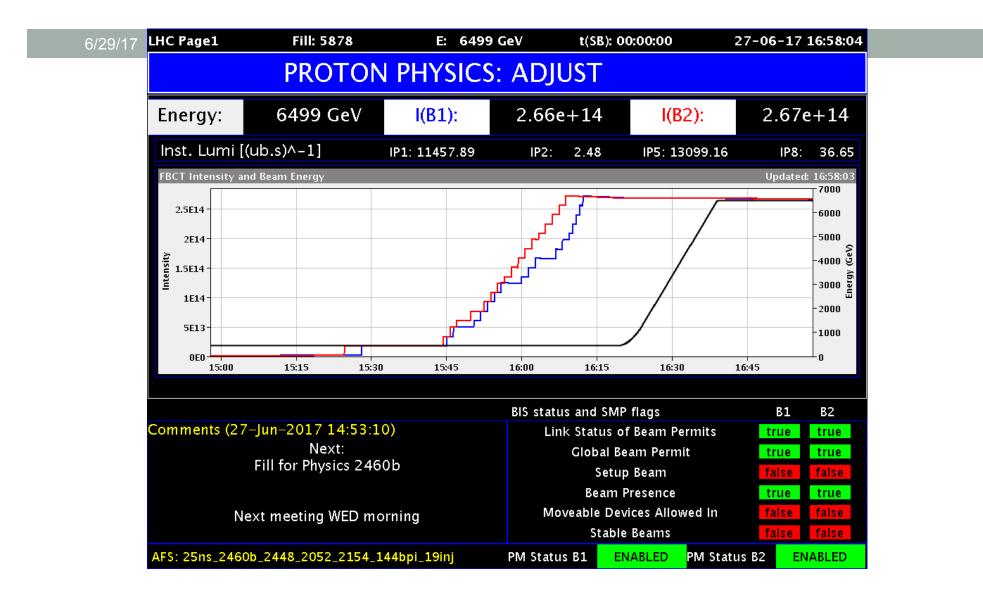
- * Proton and ion collider
- * 27 km ring (17mi)
- * 6.5 TeV beam energy
- 1232 superconducting 8.4T dipole magnets @ T=1.9°K
 - > World's largest cryogenic structure
- * 4 major experiments
 - > ATLAS, CMS
 - > ALICE, LHCb
- First collisions in 2009, then 2010-12, 2015-17

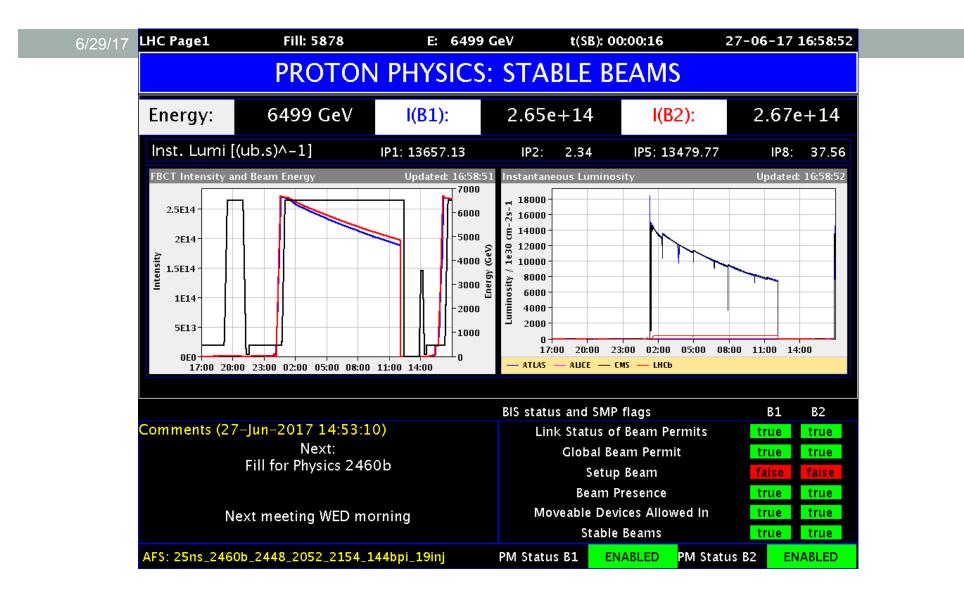
POINT 5 CMS

Particle Physics Intro

UF FLORIDA 25


6/29/17 Particle Physics Intro



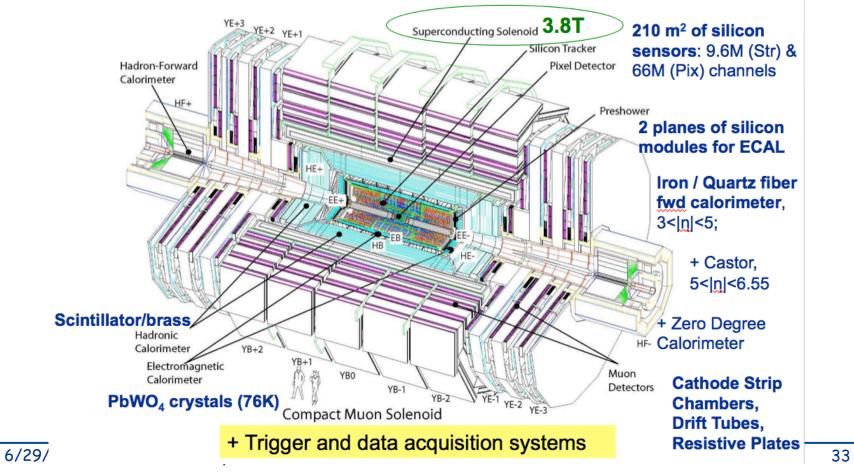


- > 15 m (50') long magnets with unique single structure for 2 beams
- > Cooled with superfluid helium

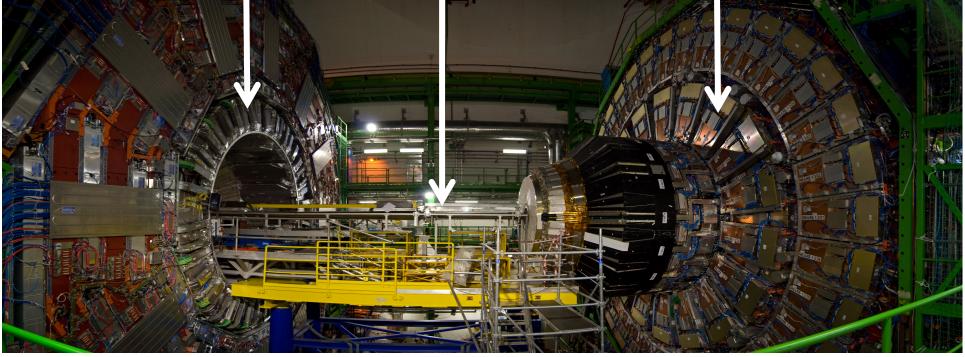
IN OPERATION NOW!

Particle Physics Intro

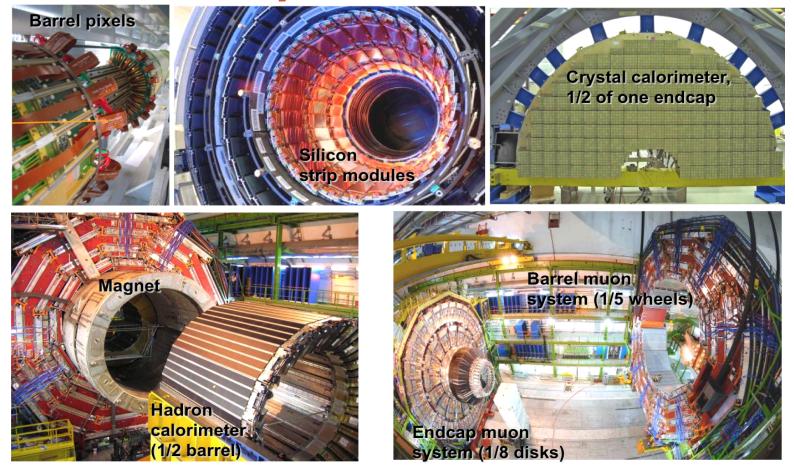
My Experiment: CMS

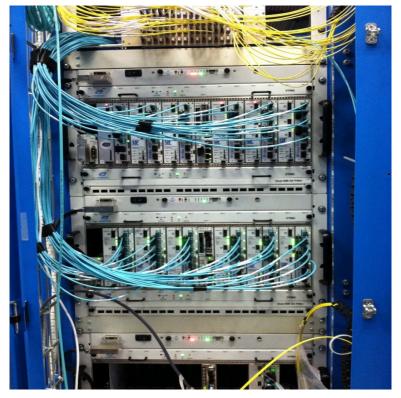

- At the LHC, the highest energy collider in town
 - Well actually it is in Geneva, Switzerland
 - 13 TeV proton collision energy
- CMS has the world's strongest magnet

6/29/17



The "Compact" Muon Solenoid (CMS)


3.8T solenoid (2.7 GJ!) Muon detectors beampipe



6/29/17

Particle Physics Intro

CMS Detector Systems

The Trigger System – the first step in collecting data: Select interesting collisions and throw away 99.998% of rest!

