COSMIC RAYS AND PHOTOMULTIPLIER TUBE TESTING

GARRETT STODDARD

MENTOR: RAUL ARMENDARIZ

WHAT ARE COSMIC RAYS

C

HOW DO WE DETECT THEM

PHOTOMULTIPLIER TUBES

Δ

$$V_{\text{peak}} = IR = \frac{\Sigma \Delta Q_i}{\Delta t} R = \frac{R}{\Delta t} \Sigma (N_{pe} ge) = R \frac{ge}{\Delta t};$$
$$V_{\text{peak}} = \frac{ge}{\Delta t} R = \frac{(2.5x10^6)(1.6x10^{-19}\text{C})}{10x10^{-9}\text{s}} 50\Omega = .002 \text{ Volts}$$

= Number of photons incident on photocathode

- = Number of photoelectrons emitted by photocathode
- = Number of electrons emitted by anode

 $g = N_e / N_{pe} = Gain of PMT$

N.

N_{pe}

 $e = 1.6 \times 10^{-19} C$ Electron charge $Q = N_e e$ Charge emitted by anode $I = \frac{\Delta Q}{\Delta t}$ Photocurrent emitted by anode I_D Dark Current emitted by anode

$$V_{i} = IR = \frac{\Delta Q_{i}}{\Delta t}R,$$
$$\Delta Q_{i} = \frac{1}{R}V_{i}\Delta t,$$
$$Q_{\text{Total}} = \Sigma \Delta Q_{i} = \frac{\Delta t}{R}\Sigma V_{i};$$

= Number of photons incident on photocathode

- = Number of photoelectrons emitted by photocathode
- = Number of electrons emitted by anode

 $g = N_e/N_{pe} = Gain of PMT$

N,

N_{pe}

 $e = 1.6 \times 10^{-19} C$ $Q = N_e e \qquad \text{Charge end}$ $I = \frac{\Delta Q}{\Delta t} \qquad \text{Phote}$ $I_D \qquad \text{Dark Current}$

Electron charge Charge emitted by anode Photocurrent emitted by anode Dark Current emitted by anode

 $V_{i} = IR = \frac{\Delta Q_{i}}{\Delta t}R,$ $\Delta Q_{i} = \frac{1}{R}V_{i}\Delta t,$ $Q_{\text{Total}} = \Sigma \Delta Q_{i} = \frac{\Delta t}{R}\Sigma V_{i};$

Table Legend (Applies to the Fit Curve) Entries – # of Waveforms Mean - Average Charge of all Waveforms RMS – Root mean Squared $X^2/ndf -$ Prob – ? Npe – ? Peak – Charge value at the peak of the fit Width – ? Amplitude - ?

- = Number of photons incident on photocathode
- = Number of photoelectrons emitted by photocathode
- = Number of electrons emitted by anode

 $g = N_e/N_{pe} = Gain of PMT$

)N,

N_{pe}

 $e = 1.6 \times 10^{-19} C$ **Electron charge** $Q = N_e e$ Charge emitted by anode $I = \frac{\Delta Q}{\Delta t}$ Photocurrent emitted by anode Dark Current emitted by anode 1_D

Table Legend (Applies to the Fit Curve)Entries – # of WaveformsMean – Average Charge of all WaveformsRMS – Root mean SquaredX²/ndf –Prob – ?Npe – ?Peak – Charge value at the peak of the fitWidth – ?Amplitude – ?

- = Number of photons incident on photocathode
- = Number of photoelectrons emitted by photocathode
- = Number of electrons emitted by anode

 $g = N_e/N_{pe} = Gain of PMT$

)N,

N_{pe}

 $e = 1.6 \times 10^{-19} C$ $Q = N_e e$ $I = \frac{\Delta Q}{\Delta t}$ I_D

Electron charge Charge emitted by anode Photocurrent emitted by anode Dark Current emitted by anode

 \bigcirc

Ó

Text