Comparing Measured Values from a Fixed Parallel Plate Capacitor Instrument and Theoretical Values for Capacitors in Parallel

Quinn Brodsky (The Hockaday School), Garrett Gu (Texas Academy of Math and Science), Danita Mathew (Garland High School), Aaron McAnalley (Harmony Science Academy Euless), Swati Ravi (Greenhill School), Dylan Robertson (Plano Senior High School), Aniya Showers (Garland High School), Vijay Vuyyuru (Plano East Senior High School)

John Thompson Science Department, Plano East Senior High School 3000 Los Rios Blvd, Plano, TX 75074

Jingbo Ye Physics Department, Southern Methodist University, Dallas, TX 75275 USA 

Search and Identification of Short-Period Variable Stars

Keri Christian (Clark High School), Allie Frymire (Greenhill School), Holly Hodge (Plano Senior High School), Rithvik Ramesh (IB World School at Plano East Senior High School), Daniel Sela (Yorktown Education), Jorden Terrazas (Harmony Science Academy Euless), Muaz Wahid (Parish Episcopal School), Grace Wolfe (All Saints Episcopal School)

Guven Yilmaz (Harmony Science Academy Euless)

Farley Ferrante (Southern Methodist University)


Using an Adjustable Parallel-Plate Capacitor to Verify the Theoretical Equivalence of Stacked Dielectrics and Capacitors in Series

Quinn Brodsky (The Hockaday School), Garrett Gu (Texas Academy of Mathematics and
Science), Danita Mathew (Garland High School), Aaron McAnalley (Harmony Science Academy Euless), 
Swati Ravi (Greenhill School), Dylan Robertson (Plano Senior High School), Aniya Showers (Garland 
High School), Vijay Vuyyuru (Plano East Senior High School) QuarkNet Students

John Thompson
Science Department, Plano East Senior High School 3000 Los Rios Blvd, Plano, TX 75074

2017 Annual Report - Vanderbilt University

Vanderbilt University QuarkNet 2016


The Vanderbilt University QuarkNET group is mentored by William (Bill) Gabella, which much help from emeritus mentor Medford Webster and a volunteer teacher Terry King.  We advise the teachers and students on the use of the Cosmic Ray Muon Detectors (CRMDs), we maintain them, and we help with either setup of our loaned out CRMDs or with those that are permanently at the school.  We also host the 5 day summer workshop for the teachers.

Precision metrology tests for the UT upgrade

Student name: Liam Meisner (Manlius Pebble Hill)
Teacher mentor: Justin Shute (Fayetteville-Manlius)
Research mentor: Dr. Xuhao Yuan (Syracuse University)
Summer 2017
The purpose of our research was to make precise measurements on a number of the
components to be used in the UT detector. The UT detector is composed of four planes of
silicon microstrip detectors, each roughly 1.5 m x 1.5 m in size. Each silicon plane is formed
from 14 (or 16) “staves”, and each stave is formed by mounting about fifteen 10 cm x 10 cm

Fabrication & development of end-of-stave mounts for the UT upgrade

Student name: Josh Owens (Fayetteville-Manlius)
Teacher mentor: Justin Shute (Fayetteville-Manlius)
Research mentor: Prof. Ray Mountain (Syracuse University)
Summer 2017
The purpose of our research was to fabricate a number of the “end-of-stave” mounts for the
UT upgrade project, and flesh out the quality assurance techniques that will be used to certify
them for the full detector. The UT detector is composed of four planes of silicon microstrip
detectors, each roughly 1.5 m x 1.5 m in size. Each silicon plane is formed from 14 (or 16)

Boston QuarkNet Center 2016-2017 Annual Report

2016-2017Boston QuarkNet Center Annual Report


November 29, 2016

  We held our usual fall meeting at 5:00 pm 11/29/2016 in the Physics Lab at Roxbury Latin School. In attendance along with our two Northeastern mentors Darien Wood and George Alverson were Amanda Harnden from Dedham H. S., new mom Catherine Newman and Mike Wadness from Medford H. S., Hema Roychowdhry and Gerry Gagnon from Newton South H. S., Ayp Awobode from Boston public schools, Mike Hirsh from Needham H. S., and Rick Dower, as host.

Report on 2017 Summer Workshop

Virtual QuarkNet Center Visit:  Brookhaven National Laboratory:  Physics Department

 Host: Helio Takai         Meeting Room 2-84 ,Physics Building,:   August 7-9, 2017

August 7, 2017 am

Antonio:  CERN update accelerator started in May.  Next year, there will be a 2-3 year shut down to fix the detector.  CERN has the coldest place in the Universe.  -2.7 C with liquid Helium.  the silicon trackers are currently fried from the high energy, so the 2-3 year shut down to replace parts.  so the LHC will not take data in 2019 ir 2020.  there will be a high luminosity upgrade in 2024, much farther away.  when the LHC was approved in 1989 the technology of the super conducting quadripole magnets was not invented yet.  so there are plans at CERN 40-50 years out .  They are looking to discover a way for the neutrinos not to create a background problem at higher energy.

CPT        T2K,  charge, parity, time.

weak interaction violates parity.  all electrons were left handed polarized. 0 momentum. active neutrinos are only left handed,

cp violation produces more matter than antimatter. 

solar neutrinos change flavor on their way to us from the sun.  quarks also to mutate and oscillatate.  We may have seen a situation that shows hints of universaility  violations

this decay should be produced in a one to one ration should be chose to 1 to 1 ratio, but it is being violated by 25%.

August 7, 2017 pm

Bs (p subshell) meson decaying to mu+ mu-

                                                                                          +/-  1

bs  (s subshell) meson decaying to e+ e- 

LHC sometimes runs in heavy ion mode. collides gold (RICK) or lead (ALEES).  the study is to see what happens when you put lots of quarks and gluons together. qcd studies show it is not a normal proton and neutron plasma, but it produces a quark and gluon plasma soup. 

Danielle:  What is condensed matter?

Wadness:  masterclass overview started today will continue tomorrow

August 8, 2017 am

am: CMS masterclass overview from Wadness, go through activities that are precursors to masterclass.  Do the mini masterclass activities.

Practice at I-spy and data set organization w histogram on CIMA collection system.

Presentation from Brookhaven teacher group and their experiences/insights with master class.

Presentation from:  Steve Bellavia: The LSST   the power point for this presentation has been made available on the Virtual page.

worlds largest survey telescope, mountain in chile 7000 feet

R = 1.2197 lambda/2A  R is resolution  of smaller objects.  So as aperature is larger in the denominator the resolution decreases to be able to resolve (see clearly) a smaller object.

largest lens ever built largest camera ever built.  focal plane =-100C  ;  electronic boards -40C

this telescope is looking for objects very far away, and looking at the milky way or moon would be too bright and damage the sensitive photocells.

mirrors and lens’ are being produced in the lab under the football field at the University of Arizona.  Many of the large mirrors and lens’ at astronomies across the globe are made here.

 24th magnitude of a single exposure. 

what is lsst going to study? takes snapshots very quickly and covers 1/2 the sky in 3 days.

dark matter, dark energy, supernovae, mapping the milky way (will detect about 10 billion stars), near earth objects (neo).

1998 congress mandates discovery of 90% of all neo > 1000 m in diameter by 2008.  and more

August 8, 2017 pm

Atlas project presentation by Helio Takai

Majority of nuclei coming to earth from outside universe are protons, but they react in our atmosphere and cause showers of particles.  Many pions are produced because they are light and easy to produce.  P zeros produce showers of electrons.  they also dcay to muons then electrons.  detectors are located in mamy places, underground labs, fluorescence detector above ground, ground array of large scintillators, under water or ice, balloons, mariachi project thought that muons could be detected using high energy radar, the telescope was built to detect a muon hit in a high school. 2008 to 2016, it showed more muons in winter contraction of atmosphere makes muons take longer to decay.  the small dips in max pattern can be linked to cme timing within the time of the month.  You can also overlay the data on the atmospheric pressure at specific time of year.  also connected to atmospheric tides of air flow based on warming earth with sunrise. day vs night.  more muons at night and in July.  Data stability and reliability needs a large area array to be visible and data collected year round.

During our time at Brookhaven, we were in the right place at the right time for a special lecture presentation.  Brief outline notes are below.

Sambamurti  Memorial Lecture August 7, 2017

Searching for new parti9cles at the LHC:  CMS Jim Hirschauer   nothing has yet been found smaller than a quark.

success of standard model:  discovery of higgs boson  2012

properties of higgs boson            collect data into 2030

test standard model at high energy                         complete…. sort of

precisely measure properties of sm particles

looking for new particles

particle masses

13 TeV

why use high energy collisions

the collider is like a giant microscope

spatial resolution is limited by wavelength of probe.

each proton has 6.5 Tev of energy but the individual energy of the quarks and gluons inside are unknown.

next goal; discover something new.

standard model (sm) has a few problems

dark matter is not described in sm

theoretical concerns with the calculation of the higgs boson mass

sm does not explain its own structure, it is not as cohesive for example as the periodic table of elements.  The sm is not nearly as elegant and insightful.

planck satellite measured the difference for mass based on rotation.  we know there must be dark ,matter in the center.

supersymetry particles SUSY. gluon has a SUSY particle called Gluino   neutrino has a SUSY partner called neutralino

theorists are trying to connect the potential ability to produce those with a low producton rate.

the gluino may be too heavy too see.  Low production rate of susy particles.  

August 9, 2017 am

Tesla Museum and site experience.  Historical artifacts and sequence of experimental results.  Very interesting presentation by Rich Gearns of Brookhaven.

The Speed of Muons from Different Angles: Looking at a Different Angle

The Speed of Muons from Different Angles: Looking at a Different Angle

Subrai Burkhalter (Detroit School of the Arts), Rachel Kirichu (International Academy East)

Mike Niedballa (WSU)  

Rob Harr (WSU)

   The purpose of our research is to discover if muons being detected at different angles move at different speeds. This research is an addition to a previous Quarknet study of the same title to better confirm, or disprove, the former data. To do this we aligned four muon detectors (the farthest apart being 2.145 meters) and ran time of flight studies with a coincidence of four to determine the average speed of muons at different angles 15 degrees apart (starting from 15 degrees to the surface to 75 degrees to the surface).

We infer from our research that as the detectors angle was closer to the surface, the faster on average the muons were traveling. This is the exact opposite conclusion from the Quarknet study before us, therefore more studies are needed to confirm which conclusion is accurate. 

The Effect Of Sand On Muon Flux

The Effect Of Sand On Muon Flux

Kaitlyn Proffitt (Eisenhower High School/Utica Center for Mathematics, Science, and Technology), Khaliah Spoljaric (Robichaud High School)

Mike Niedballa (Wayne State)

Rob Harr (Wayne State)

The purpose of our research was to study the effect of different heights of sand on muon flux. We aimed to simulate the behavior of muons once they traveled below ground level. We started the study with four muon detector paddles. We placed paddles 1 and 2 stacked on top of each other on the top shelf of a 1.180 meter tall shelving unit. Paddles 3 and 4 were also stacked on top of each other and were placed on the ground directly beneath the first two paddles under the shelving unit. We ran seven trials, one trial without any sand bags between the muon paddles and six trials adding an additional bag of sand each time. The height of each bag of sand was an average of 0.100m. Flux was recorded at ten minute intervals. The trials would run for time periods varying in length from six hours to sixty-five hours, due to time constraints. For each trial, we ran a flux study, each with a coincidence level of four. Our data showed a negatively linear relationship between muon flux and height of sand with a line of best fit of y = -44.685x +199.9, showing that an increased height of sand does decrease muon flux. If our projection is correct, there would be no muon flux at a depth of approximately 4.5 meters below the surface. If sensitive scientific research or medical needs required an area free of cosmic radiation, creating a lab or office below this depth could be a solution, effectively shielding against muons. Further data collection would yield more accurate results.