2017 Abstract from Maggie, Maritza, and Joe

Quarknet Abstract: Joseph Carolan, Maggie Barclay, Maritza Gallegos
The ICARUS detector is a liquid argon TPC neutrino detector aiming to measure the oscillation of neutrino flavors on a short baseline. This summer we worked on creating a slow control system for the remote monitoring and operation of a power supply which provided a biasing electric potential across the anode wire planes in the ICARUS detector. In order to effectively monitor and set the necessary parameters, we developed a graphical and physical user interface. The graphical user interface, created in Control System Studios (CSS) functioned as a control room monitor and controller allowing the user to set and receive values on the power supply remotely. In order to create this interface we created a channel access client to access the necessary process variables from an Input Output Controller, then passed these values into python and javascript programs, allowing for an intuitive and interactive, yet heavy, interface. Implemented features include a safe incremental ramping of the voltage as well as email alerts and automatic data exportation. In contrast, the physical interface used an LED display to provide warnings and approximate values. This interface was created by wiring LED warning lights to GPIO pins on a Beaglebone Black, then creating python scripts utilizing a channel access support module to retrieve process variables. Although lightweight, this display was less interactive and required a separate web-based UI to readback specific values. By completing these clients, we aim to be able to supply power efficiently and safely to the anode wire plane of the ICARUS detector.

2017 Abstract from Arielle and Antony

The South Pole Telescope: Collaborations for the Cosmic Microwave Background  Arielle Pfeil (Bartlett High School), Antony Simonoff (Adlai E. Stevenson High School),  and Bradford Benson (Fermilab)
Approximately 13.8 billion years ago, the universe began from a hot, dense state through an explosion of matter and energy, known as the Big Bang. During the primordial stages of the universe, light was emitted during the recombination of particles; this thermal radiation — a near perfect blackbody — is known as the Cosmic Microwave Background (CMB). The South Pole Telescope uses a polarization sensitive focal plane and superconducting Transition-Edge Sensor (TES) bolometers to interpret these ~3K (2.725K) microwave signals from the early universe. To characterize the response of these detectors on the South Pole Telescope, calibration is performed with an optical chopper and polarization setup. The purpose of the research conducted through the QuarkNet summer program with the South Pole Telescope is to assist in the development, construction, and testing of this setup which sends modulated light to detectors. Testing of these detectors — known as bolometers — for the South Pole Telescope is necessary to measure whether or not the polarized pixels are orthogonal. 
Specific wavelengths of electromagnetic radiation which hit these bolometers originate from an infrared emitter source which simulates a 4K blackbody. From the IR source and through an aluminum tunnel, these wavelengths are sent through a rotating optical chopper which chops light flow at a specific frequency. The light continues onwards to a wire grid that polarizes the IR emission and then to the detectors. Information on the operation of both the optical chopper and the stage holding the polarization grid can be received via scripting through a serial port. The reason to use an optical chopper lies with its ability to reduce noise in the system as the detectors will only be looking for a specific reference frequency. Currently, the optical chopper and polarization setup is installed below a cryostat where the detector orientation lies. Further work will utilize the setup to receive specific readings on the detector’s operation. 

SMU QuarkNet Center Annual Report

Southern Methodist University Summer 2017 – The SMU Particle Physics group sponsored its annual QuarkNet activities this summer for local high school physics teachers and students. The QuarkNet teachers’ workshop was held July 31 - Aug 4. In addition, there were 6-week-long summer research projects for high school students. This year there were 16 teachers from Dallas area public and private schools at the workshop while 2 teachers and 16 students performed summer research in SMU labs.


Muon Lifetime Study in Cosmic Ray Detector and MicroBooNE Analysis

Calculating the Average Speed of a Cosmic Ray Muon using a Scintillating Cosmic Ray Muon Detector

Our research this summer was divided in to two parts:  cosmic ray muon detector experiments and neutrino physics.  Abstracts for both projects are attached.